Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 162(2): 1073-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23613273

RESUMEN

Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Diterpenos/metabolismo , Biología Molecular/métodos , Plantas/genética , Plantas/metabolismo , Clonación Molecular , Minería de Datos , Bases de Datos Genéticas , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
2.
Plant Physiol ; 161(2): 600-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23370714

RESUMEN

Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.


Asunto(s)
Transferasas Alquil y Aril/genética , Diterpenos/análisis , Evolución Molecular , Pinus/genética , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Ácidos Carboxílicos/análisis , Ácidos Carboxílicos/metabolismo , Cromatografía Liquida , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Diterpenos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Datos de Secuencia Molecular , Fenantrenos/análisis , Fenantrenos/metabolismo , Filogenia , Pinus/clasificación , Pinus/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Especificidad de la Especie , Transcriptoma/genética
3.
J Biol Chem ; 286(24): 21145-53, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21518766

RESUMEN

The levopimaradiene/abietadiene synthase from Norway spruce (Picea abies; PaLAS) has previously been reported to produce a mixture of four diterpene hydrocarbons when incubated with geranylgeranyl diphosphate as the substrate: levopimaradiene, abietadiene, neoabietadiene, and palustradiene. However, variability in the assay products observed by GC-MS of this and orthologous conifer diterpene synthases over the past 15 years suggested that these diterpenes may not be the initial enzyme assay products but are rather the products of dehydration of an unstable alcohol. We have identified epimers of the thermally unstable allylic tertiary alcohol 13-hydroxy-8(14)-abietene as the products of PaLAS. The identification of these compounds, not previously described in conifers, as the initial products of PaLAS has considerable implications for our understanding of the complexity of the biosynthetic pathway of the structurally diverse diterpene resin acids of conifer defense.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Picea/enzimología , Terpenos/química , Abietanos/química , Alcoholes/química , Cromatografía Liquida/métodos , Escherichia coli/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos/química , Cinética , Espectrometría de Masas/métodos , Extractos Vegetales/química , Proteínas Recombinantes/química , Estereoisomerismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA