Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 260(Pt 2): 129426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232888

RESUMEN

The effects of electron beam irradiation (EBI) at different doses (0, 2, 4, 6, 8, and 10 kGy) were investigated on the structural and functional properties of casein, including their interrelationship. A gradual reduction in the α-helix content of the secondary structure (as a stable structure) indicates that casein under EBI treatment mainly undergoes fragmentation and aggregation from a structural perspective. Furthermore, the hydrophobic group and tryptophan in the tertiary structure were exposed, which opened up the internal structure of the protein. In addition, a continuously increasing irradiation dose led to casein aggregation, as confirmed by electron microscopy. The structural changes affected its functional properties, such as solubility, emulsification, foaming, and rheological properties, all of which increased first and subsequently decreased. Finally, at irradiation doses of 4-6 kGy, casein was modified to exhibit optimal functional properties, which enhanced its food processing value and performance.


Asunto(s)
Caseínas , Leche , Animales , Leche/química , Caseínas/química , Electrones , Solubilidad , Cabras
2.
Int J Biol Macromol ; 260(Pt 2): 129585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246473

RESUMEN

This study investigated the effects of different irradiation doses of an electron beam (e-beam) (0, 2, 4, 6, 8, and 10 kGy) on the structure, emulsification, foaming, and rheological and gel properties of soybean 11S globulin. The irradiation treatment at 4 and 6 kGy significantly increased the solubility, surface hydrophobicity, disulfide bonding, and ζ-potential of 11S globulin, decreased the particle size of the protein solution, and effectively improved the emulsifying activity and foaming stability of the protein solution. Moreover, irradiation induced moderate cross-linking and aggregation of the proteins, thereby increasing the apparent viscosity and shear stress of the protein solution. In addition, the low-field NMR and microstructure analysis results revealed that protein gels formed a dense and homogeneous three-dimensional mesh structure after irradiation (6 kGy), along with increased content of bound water (T2b) and water not readily flowable (T21) and a decrease content of free water (T22). Overall, our results confirmed that e-beam irradiation could significantly improve the physicochemical properties of soybean 11S globulin. Our study thus provides a new technical means for the application of electron beam irradiation technology toward protein modification and broadens the high-value utilization of soybean 11S globulin in the food processing industry.


Asunto(s)
Globulinas , Glycine max , Electrones , Globulinas/química , Solubilidad , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...