Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616852

RESUMEN

Low-frequency oscillations (LFO) occur in railway electrification systems due to the incorporation of new trains with switching converters. As a result, the increased harmonic content can cause catenary stability problems under certain conditions. Most of the research published on this topic to date is focused on modelling the event and analysing it using frequency spectrums. However, in recent years, due to the new technologies linked to Big Data (BD) and data mining (DM), a new opportunity to study and detect LFO events by means of machine-learning (ML) methods has emerged. Trains continuously collect data from the most important catenary variables, which offers new resources for analysing this type of event. Therefore, this article presents the design and implementation of a data-driven LFO event detection strategy for AC railway network scenarios. Compared to previous investigations, a new approach to analyse and detect LFO events, based on field data and ML, is presented. To obtain the most appropriate detection approach for the context of this application, on the one hand, this investigation includes a comparison of machine-learning algorithms (support vector machine, logistic regression, random forest, k-nearest neighbours, naïve Bayes) which have been trained with real field data. On the other hand, an analysis of key parameters and features to optimize event detection is also included. Thus, the most significant result of this work is the high metric values of the solution, reaching values above 97% in accuracy and 93% in F-1 score with the random forest algorithm. In addition, the applicability and training of data-driven methods with real field data are demonstrated. This automatic detection strategy can help with speeding up and improving LFO detection tasks that used to be performed manually. Finally, it is worth mentioning that this research has been structured based on the CRISP-DM methodology, established as the de facto approach for industrial DM projects.


Asunto(s)
Algoritmos , Aprendizaje Automático , Teorema de Bayes , Bosques Aleatorios , Minería de Datos , Máquina de Vectores de Soporte
2.
Sensors (Basel) ; 21(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200893

RESUMEN

The need to manufacture more competitive equipment, together with the emergence of the digital technologies from the so-called Industry 4.0, have changed many paradigms of the industrial sector. Presently, the trend has shifted to massively acquire operational data, which can be processed to extract really valuable information with the help of Machine Learning or Deep Learning techniques. As a result, classical Condition Monitoring methodologies, such as model- and signal-based ones are being overcome by data-driven approaches. Therefore, the current paper provides a review of these data-driven active supervision strategies implemented in electric drives for fault detection and diagnosis (FDD). Hence, first, an overview of the main FDD methods is presented. Then, some basic guidelines to implement the Machine Learning workflow on which most data-driven strategies are based, are explained. In addition, finally, the review of scientific articles related to the topic is provided, together with a discussion which tries to identify the main research gaps and opportunities.


Asunto(s)
Electricidad , Aprendizaje Automático
3.
Sensors (Basel) ; 20(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053944

RESUMEN

Due to the importance of sensors in railway traction drives availability, sensor fault diagnosis has become a key point in order to move from preventive maintenance to condition-based maintenance. Most research works are limited to sensor fault detection and isolation, but only a few of them analyze the types of sensor faults, such as offset or gain, with the aim of reconfiguring the sensor in order to implement a fault tolerant system. This article is based on a fusion of model-based and data-driven techniques. First, an observer-based approach, using a Sliding Mode observer, is utilized for sensor fault reconstruction in real time. Then, once the fault is detected, a time window of sensor measurements and sensor fault reconstruction is sent to the remote maintenance center for fault evaluation. Finally, an offline processing is carried out to discriminate between gain and offset sensor faults, in order to get a maintenance decision-making to reconfigure the sensor during the next train stop. Fault classification is done by means of histograms and statistics. The technique here proposed is applied to the DC-link voltage sensor in a railway traction drive and is validated in a hardware-in-the-loop platform.

4.
Sensors (Basel) ; 18(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932114

RESUMEN

Due to the importance of sensors in control strategy and safety, early detection of faults in sensors has become a key point to improve the availability of railway traction drives. The presented sensor fault reconstruction is based on sliding mode observers and equivalent injection signals, and it allows detecting defective sensors and isolating faults. Moreover, the severity of faults is provided. The proposed on-board fault reconstruction has been validated in a hardware-in-the-loop platform, composed of a real-time simulator and a commercial traction control unit for a tram. Low computational resources, robustness to measurement noise, and easiness to tune are the main requirements for industrial acceptance. As railway applications are not safety-critical systems, compared to aerospace applications, a fault evaluation procedure is proposed, since there is enough time to perform diagnostic tasks. This procedure analyses the fault reconstruction in the steady state, delaying the decision-making in some seconds, but minimising false detections.

5.
Sensors (Basel) ; 18(5)2018 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-29757251

RESUMEN

Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...