Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Oncol ; 13: 1138305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925916

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer patients in the last decade, but immune-related adverse events (irAEs) pose significant clinical challenges. Despite advances in the management of these unique toxicities, there remains an unmet need to further characterize the patient-level drivers of irAEs in order to optimize the benefit/risk balance in patients receiving cancer immunotherapy. Methods: An individual-patient data post-hoc meta-analysis was performed using data from 10,344 patients across 15 Roche sponsored clinical trials with atezolizumab in five different solid tumor types to assess the association between baseline risk factors and the time to onset of irAE. In this study, the overall analysis was conducted by treatment arm, indication, toxicity grade and irAE type, and the study design considered confounder adjustment to assess potential differences in risk factor profiles. Results: This analysis demonstrates that the safety profile of atezolizumab is generally consistent across indications in the 15 studies evaluated. In addition, our findings corroborate with prior reviews which suggest that reported rates of irAEs with PD-(L)1 inhibitors are nominally lower than CTLA-4 inhibitors. In our analysis, there were no remarkable differences in the distribution of toxicity grades between indications, but some indication-specific differences regarding the type of irAE were seen across treatment arms, where pneumonitis mainly occurred in lung cancer, and hypothyroidism and rash had a higher prevalence in advanced renal cell carcinoma compared to all other indications. Results showed consistency of risk factors across indications and by toxicity grade. The strongest and most consistent risk factors were mostly organ-specific such as elevated liver enzymes for hepatitis and thyroid stimulating hormone (TSH) for thyroid toxicities. Another strong but non-organ-specific risk factor was ethnicity, which was associated with rash, hepatitis and pneumonitis. Further understanding the impact of ethnicity on ICI associated irAEs is considered as an area for future research. Conclusions: Overall, this analysis demonstrated that atezolizumab safety profile is consistent across indications, is clinically distinguishable from comparator regimens without checkpoint inhibition, and in line with literature, seems to suggest a nominally lower reported rates of irAEs vs CTLA-4 inhibitors. This analysis demonstrates several risk factors for irAEs by indication, severity and location of irAE, and by patient ethnicity. Additionally, several potential irAE risk factors that have been published to date, such as demographic factors, liver enzymes, TSH and blood cell counts, are assessed in this large-scale meta-analysis, providing a more consistent picture of their relevance. However, given the small effects size, changes to clinical management of irAEs associated with the use of Anti-PDL1 therapy are not warranted.

2.
J Exp Clin Cancer Res ; 42(1): 25, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670508

RESUMEN

BACKGROUND: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3ß, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Colina/metabolismo , Colina/uso terapéutico , ARN Interferente Pequeño , Receptor ErbB-2/metabolismo , Resistencia a Antineoplásicos/genética , Fosfolipasas/genética
3.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36671027

RESUMEN

Proteasome inhibition is associated with parkinsonian pathology in vivo and degeneration of dopaminergic neurons in vitro. We explored here the metabolome (386 metabolites) and transcriptome (3257 transcripts) regulations of human LUHMES neurons, following exposure to MG-132 [100 nM]. This proteasome inhibitor killed cells within 24 h but did not reduce viability for 12 h. Overall, 206 metabolites were changed in live neurons. The early (3 h) metabolome changes suggested a compromised energy metabolism. For instance, AMP, NADH and lactate were up-regulated, while glycolytic and citric acid cycle intermediates were down-regulated. At later time points, glutathione-related metabolites were up-regulated, most likely by an early oxidative stress response and activation of NRF2/ATF4 target genes. The transcriptome pattern confirmed proteostatic stress (fast up-regulation of proteasome subunits) and also suggested the progressive activation of additional stress response pathways. The early ones (e.g., HIF-1, NF-kB, HSF-1) can be considered a cytoprotective cellular counter-regulation, which maintained cell viability. For instance, a very strong up-regulation of AIFM2 (=FSP1) may have prevented fast ferroptotic death. For most of the initial period, a definite life-death decision was not taken, as neurons could be rescued for at least 10 h after the start of proteasome inhibition. Late responses involved p53 activation and catabolic processes such as a loss of pyrimidine synthesis intermediates. We interpret this as a phase of co-occurrence of protective and maladaptive cellular changes. Altogether, this combined metabolomics-transcriptomics analysis informs on responses triggered in neurons by proteasome dysfunction that may be targeted by novel therapeutic intervention in Parkinson's disease.

4.
Cells ; 11(21)2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36359802

RESUMEN

Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87-90%. A comparison to the UKK2 assay (accuracies of 90-92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92-95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.


Asunto(s)
Teratógenos , Pruebas de Toxicidad , Humanos , Teratógenos/toxicidad , Diferenciación Celular , Células Madre , Técnicas In Vitro
5.
Chem Res Toxicol ; 35(5): 760-773, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35416653

RESUMEN

Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.


Asunto(s)
Células Madre Pluripotentes Inducidas , Transcriptoma , Sustancias Peligrosas , Humanos , Técnicas In Vitro , Teratógenos
8.
BMC Bioinformatics ; 22(1): 586, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895139

RESUMEN

BACKGROUND: Important objectives in cancer research are the prediction of a patient's risk based on molecular measurements such as gene expression data and the identification of new prognostic biomarkers (e.g. genes). In clinical practice, this is often challenging because patient cohorts are typically small and can be heterogeneous. In classical subgroup analysis, a separate prediction model is fitted using only the data of one specific cohort. However, this can lead to a loss of power when the sample size is small. Simple pooling of all cohorts, on the other hand, can lead to biased results, especially when the cohorts are heterogeneous. RESULTS: We propose a new Bayesian approach suitable for continuous molecular measurements and survival outcome that identifies the important predictors and provides a separate risk prediction model for each cohort. It allows sharing information between cohorts to increase power by assuming a graph linking predictors within and across different cohorts. The graph helps to identify pathways of functionally related genes and genes that are simultaneously prognostic in different cohorts. CONCLUSIONS: Results demonstrate that our proposed approach is superior to the standard approaches in terms of prediction performance and increased power in variable selection when the sample size is small.


Asunto(s)
Teorema de Bayes , Estudios de Cohortes , Expresión Génica , Humanos , Tamaño de la Muestra
9.
BMC Med Inform Decis Mak ; 21(1): 342, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876106

RESUMEN

BACKGROUND: An important task in clinical medicine is the construction of risk prediction models for specific subgroups of patients based on high-dimensional molecular measurements such as gene expression data. Major objectives in modeling high-dimensional data are good prediction performance and feature selection to find a subset of predictors that are truly associated with a clinical outcome such as a time-to-event endpoint. In clinical practice, this task is challenging since patient cohorts are typically small and can be heterogeneous with regard to their relationship between predictors and outcome. When data of several subgroups of patients with the same or similar disease are available, it is tempting to combine them to increase sample size, such as in multicenter studies. However, heterogeneity between subgroups can lead to biased results and subgroup-specific effects may remain undetected. METHODS: For this situation, we propose a penalized Cox regression model with a weighted version of the Cox partial likelihood that includes patients of all subgroups but assigns them individual weights based on their subgroup affiliation. The weights are estimated from the data such that patients who are likely to belong to the subgroup of interest obtain higher weights in the subgroup-specific model. RESULTS: Our proposed approach is evaluated through simulations and application to real lung cancer cohorts, and compared to existing approaches. Simulation results demonstrate that our proposed model is superior to standard approaches in terms of prediction performance and variable selection accuracy when the sample size is small. CONCLUSIONS: The results suggest that sharing information between subgroups by incorporating appropriate weights into the likelihood can increase power to identify the prognostic covariates and improve risk prediction.


Asunto(s)
Neoplasias Pulmonares , Simulación por Computador , Expresión Génica , Humanos , Neoplasias Pulmonares/diagnóstico , Modelos de Riesgos Proporcionales , Tamaño de la Muestra
10.
Clin Cancer Res ; 27(8): 2148-2158, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33542080

RESUMEN

PURPOSE: Expression-based classifiers to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) are not routinely used in the clinic. We aimed to build and validate a classifier for pCR after NACT. PATIENTS AND METHODS: We performed a prospective multicenter study (EXPRESSION) including 114 patients treated with anthracycline/taxane-based NACT. Pretreatment core needle biopsies from 91 patients were used for gene expression analysis and classifier construction, followed by validation in five external cohorts (n = 619). RESULTS: A 20-gene classifier established in the EXPRESSION cohort using a Youden index-based cut-off point predicted pCR in the validation cohorts with an accuracy, AUC, negative predictive value (NPV), positive predictive value, sensitivity, and specificity of 0.811, 0.768, 0.829, 0.587, 0.216, and 0.962, respectively. Alternatively, aiming for a high NPV by defining the cut-off point for classification based on the complete responder with the lowest predicted probability of pCR in the EXPRESSION cohort led to an NPV of 0.960 upon external validation. With this extreme-low cut-off point, a recommendation to not treat with anthracycline/taxane-based NACT would be possible for 121 of 619 unselected patients (19.5%) and 112 of 322 patients with luminal breast cancer (34.8%). The analysis of the molecular subtypes showed that the identification of patients who do not achieve a pCR by the 20-gene classifier was particularly relevant in luminal breast cancer. CONCLUSIONS: The novel 20-gene classifier reliably identifies patients who do not achieve a pCR in about one third of luminal breast cancers in both the EXPRESSION and combined validation cohorts.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Biomarcadores de Tumor/genética , Neoplasias de la Mama/terapia , Toma de Decisiones Clínicas/métodos , Terapia Neoadyuvante/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Quimioterapia Adyuvante/métodos , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mastectomía , Persona de Mediana Edad , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Selección de Paciente , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Resultado del Tratamiento
11.
Arch Toxicol ; 94(1): 151-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712839

RESUMEN

The first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate into neuroepithelial cells for 6 days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)) and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (1) the concentration-dependence, (2) the time dependence, and (3) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This 'RoFA predictor gene set' may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.


Asunto(s)
Células-Madre Neurales/efectos de los fármacos , Trastornos del Neurodesarrollo/inducido químicamente , Neurotoxinas/farmacología , Formación de Roseta/métodos , Pruebas de Toxicidad/métodos , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo
12.
Bioinformatics ; 35(14): i484-i491, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31510644

RESUMEN

MOTIVATION: To obtain a reliable prediction model for a specific cancer subgroup or cohort is often difficult due to limited sample size and, in survival analysis, due to potentially high censoring rates. Sometimes similar data from other patient subgroups are available, e.g. from other clinical centers. Simple pooling of all subgroups can decrease the variance of the predicted parameters of the prediction models, but also increase the bias due to heterogeneity between the cohorts. A promising compromise is to identify those subgroups with a similar relationship between covariates and target variable and then include only these for model building. RESULTS: We propose a subgroup-based weighted likelihood approach for survival prediction with high-dimensional genetic covariates. When predicting survival for a specific subgroup, for every other subgroup an individual weight determines the strength with which its observations enter into model building. MBO (model-based optimization) can be used to quickly find a good prediction model in the presence of a large number of hyperparameters. We use MBO to identify the best model for survival prediction of a specific subgroup by optimizing the weights for additional subgroups for a Cox model. The approach is evaluated on a set of lung cancer cohorts with gene expression measurements. The resulting models have competitive prediction quality, and they reflect the similarity of the corresponding cancer subgroups, with both weights close to 0 and close to 1 and medium weights. AVAILABILITY AND IMPLEMENTATION: mlrMBO is implemented as an R-package and is freely available at http://github.com/mlr-org/mlrMBO.


Asunto(s)
Expresión Génica , Neoplasias Pulmonares , Análisis de Supervivencia , Femenino , Humanos , Funciones de Verosimilitud , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Masculino , Tamaño de la Muestra
13.
Int J Cancer ; 145(4): 901-915, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30653260

RESUMEN

Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high-density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis-free survival in node-negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress-induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Lipasa/metabolismo , Lípidos/fisiología , Estrés Oxidativo/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Lipoproteínas HDL/metabolismo , Células MCF-7 , Persona de Mediana Edad , Regulación hacia Arriba/fisiología
14.
J Thorac Oncol ; 14(4): 628-640, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30639618

RESUMEN

INTRODUCTION: Infiltration of T and B/plasma cells has been linked to NSCLC prognosis, but this has not been thoroughly investigated in relation to the expression of programmed death ligand 1 (PD-L1). Here, we determine the association of lymphocytes and PD-L1 with overall survival (OS) in two retrospective cohorts of operated NSCLC patients who were not treated with checkpoint inhibitors targeting the programmed death 1/PD-L1 axis. Moreover, we evaluate how PD-L1 positivity and clinicopathologic factors affect the prognostic association of lymphocytes. METHODS: Cluster of differentiation (CD) 3 (CD3)-, CD8-, CD4-, forkhead box P3 (FOXP3)-, CD20-, CD79A-, and immunoglobulin kappa constant (IGKC)-positive immune cells, and tumor PD-L1 positivity, were determined by immunohistochemistry on tissue microarrays (n = 705). Affymetrix data was analyzed for a patient subset, and supplemented with publicly available transcriptomics data (N = 1724). Associations with OS were assessed by Kaplan-Meier plots and uni- and multivariate Cox regression. RESULTS: Higher levels of T and B plasma cells were associated with longer OS (p = 0.004 and p < 0.001, for CD8 and IGKC, respectively). Highly proliferative tumors with few lymphocytes had the worst outcome. No association of PD-L1 positivity with OS was observed in a nonstratified patient population; however, a significant association with shorter OS was observed in never-smokers (p = 0.009 and p = 0.002, 5% and 50% cutoff). Lymphocyte infiltration was not associated with OS in PD-L1-positive tumors (50% cutoff). The prognostic association of lymphocyte infiltration also depended on the patients' smoking history and histologic subtype. CONCLUSIONS: Proliferation, PD-L1 status, smoking history, and histology should be considered if lymphocyte infiltration is to be used as a prognostic biomarker.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Masculino , Pronóstico , Receptor de Muerte Celular Programada 1/biosíntesis , Receptor de Muerte Celular Programada 1/genética , Estudios Retrospectivos , Análisis de Matrices Tisulares
15.
PLoS One ; 12(11): e0187246, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29112949

RESUMEN

Non-small cell lung cancer (NSCLC) represents a genomically unstable cancer type with extensive copy number aberrations. The relationship of gene copy number alterations and subsequent mRNA levels has only fragmentarily been described. The aim of this study was to conduct a genome-wide analysis of gene copy number gains and corresponding gene expression levels in a clinically well annotated NSCLC patient cohort (n = 190) and their association with survival. While more than half of all analyzed gene copy number-gene expression pairs showed statistically significant correlations (10,296 of 18,756 genes), high correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes (1.6%), including KRAS, EGFR and MDM2. Higher correlation coefficients were associated with higher copy number and expression levels. Strong correlations were frequently based on few tumors with high copy number gains and correspondingly increased mRNA expression. Among the highly correlating genes, GO groups associated with posttranslational protein modifications were particularly frequent, including ubiquitination and neddylation. In a meta-analysis including 1,779 patients we found that survival associated genes were overrepresented among highly correlating genes (61 of the 301 highly correlating genes, FDR adjusted p<0.05). Among them are the chaperone CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a comprehensive analysis we described a distinct set of highly correlating genes. These genes were found to be overrepresented among survival-associated genes based on gene expression in a large collection of publicly available datasets.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Humanos , Análisis de Supervivencia
16.
Cancer Res ; 77(17): 4589-4601, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28652252

RESUMEN

Glycerophosphodiesterase EDI3 (GPCPD1; GDE5; GDPD6) has been suggested to promote cell migration, adhesion, and spreading, but its mechanisms of action remain uncertain. In this study, we targeted the glycerol-3-phosphate acyltransferase GPAM along with choline kinase-α (CHKA), the enzymes that catabolize the products of EDI3 to determine which downstream pathway is relevant for migration. Our results clearly showed that GPAM influenced cell migration via the signaling lipid lysophosphatidic acid (LPA), linking it with GPAM to cell migration. Analysis of GPAM expression in different cancer types revealed a significant association between high GPAM expression and reduced overall survival in ovarian cancer. Silencing GPAM in ovarian cancer cells decreased cell migration and reduced the growth of tumor xenografts. In contrast to these observations, manipulating CHKA did not influence cell migration in the same set of cell lines. Overall, our findings show how GPAM influences intracellular LPA levels to promote cell migration and tumor growth. Cancer Res; 77(17); 4589-601. ©2017 AACR.


Asunto(s)
Movimiento Celular , Colina Quinasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/enzimología , Pronóstico , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Anal Bioanal Chem ; 409(6): 1591-1606, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27896396

RESUMEN

Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.


Asunto(s)
Betaína/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Metaboloma , Espectroscopía de Protones por Resonancia Magnética/métodos , Transcriptoma , Animales , Eliminación de Gen , Ácido Láctico/metabolismo , Leptina/genética , Leptina/metabolismo , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica/métodos , Ratones
18.
PLoS One ; 11(12): e0167585, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27926932

RESUMEN

BACKGROUND: In breast cancer, gene signatures that predict the risk of metastasis after surgical tumor resection are mainly indicative of early events. The purpose of this study was to identify genes linked to metastatic recurrence more than three years after surgery. METHODS: Affymetrix HG U133A and Plus 2.0 array datasets with information on metastasis-free, disease-free or overall survival were accessed via public repositories. Time restricted Cox regression models were used to identify genes associated with metastasis during or after the first three years post-surgery (early- and late-type genes). A sequential validation study design, with two non-adjuvantly treated discovery cohorts (n = 409) and one validation cohort (n = 169) was applied and identified genes were further evaluated in tamoxifen-treated breast cancer patients (n = 923), as well as in patients with non-small cell lung (n = 1779), colon (n = 893) and ovarian (n = 922) cancer. RESULTS: Ten late- and 243 early-type genes were identified in adjuvantly untreated breast cancer. Adjustment to clinicopathological factors and an established proliferation-related signature markedly reduced the number of early-type genes to 16, whereas nine late-type genes still remained significant. These nine genes were associated with metastasis-free survival (MFS) also in a non-time restricted model, but not in the early period alone, stressing that their prognostic impact was primarily based on MFS more than three years after surgery. Four of the ten late-type genes, the ribosome-related factors EIF4B, RPL5, RPL3, and the tumor angiogenesis modifier EPN3 were significantly associated with MFS in the late period also in a meta-analysis of tamoxifen-treated breast cancer cohorts. In contrast, only one late-type gene (EPN3) showed consistent survival associations in more than one cohort in the other cancer types, being associated with worse outcome in two non-small cell lung cancer cohorts. No late-type gene was validated in ovarian and colon cancer. CONCLUSIONS: Ribosome-related genes were associated with decreased risk of late metastasis in both adjuvantly untreated and tamoxifen-treated breast cancer patients. In contrast, high expression of epsin (EPN3) was associated with increased risk of late metastasis. This is of clinical relevance considering the well-understood role of epsins in tumor angiogenesis and the ongoing development of epsin antagonizing therapies.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Neoplasias de la Mama/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Metástasis de la Neoplasia/genética , Receptores de Estrógenos/genética , Ribosomas/genética , Anciano , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Proteína Ribosomal L3 , Ribosomas/efectos de los fármacos , Tamoxifeno/uso terapéutico
19.
JCI Insight ; 1(10): e86837, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27699219

RESUMEN

Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Transcetolasa/metabolismo , Anciano , Femenino , Humanos , Inmunohistoquímica , Masculino , Pronóstico , Análisis de Secuencia de ARN , Transcriptoma
20.
Arch Toxicol ; 88(12): 2261-87, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25399406

RESUMEN

A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory ( http://wiki.toxbank.net/toxicogenomics-map/ ) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes.


Asunto(s)
Bases de Datos Genéticas , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatopatías/genética , Bibliotecas de Moléculas Pequeñas/toxicidad , Toxicogenética/métodos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Análisis de Componente Principal , Bibliotecas de Moléculas Pequeñas/química , Toxicogenética/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...