Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Pract Thromb Haemost ; 6(5): e12756, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35865733

RESUMEN

Introduction: Serpin E2 or protease nexin-1 (PN-1) is a glycoprotein belonging to the serpin superfamily, whose function is closely linked to its ability to inhibit thrombin and proteases of the plasminergic system. Objectives: In the absence of specific quantitative methods, an ELISA for the quantification of human PN-1 was characterized and used in biological fluids. Methods: The ELISA for human PN-1 was developed using two monoclonal antibodies raised against human recombinant PN-1. PN-1 was quantified in plasma, serum, platelet secretion from controls and patients with hemophilia A and in conditioned medium of aortic tissue. Results: A linear dose-response curve was observed between 2 and 35 ng/mL human PN-1. Intra- and interassay coefficients of variation were 6.2% and 11.1%, respectively. Assay recoveries of PN-1 added to biological samples were ≈95% in plasma, ≈97% in platelet reaction buffer, and ≈93% in RPMI cell culture medium. Levels of PN-1 secreted from activated human platelets from controls was similar to that of patients with hemophilia A. PN-1 could be detected in conditioned media of aneurysmal aorta but not in that of control aorta. Conclusion: This is the first fully characterized ELISA for human serpin E2 level in biological fluids. It may constitute a relevant novel tool for further investigations on the pathophysiological role of serpin E2 in a variety of clinical studies.

2.
Sci Rep ; 11(1): 13412, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183729

RESUMEN

We previously identified the inhibitory serpin protease nexin-1 (PN-1) as an important player of the angiogenic balance with anti-angiogenic activity in physiological conditions. In the present study, we aimed to determine the role of PN-1 on pathological angiogenesis and particularly in response to ischemia, in the mouse model induced by femoral artery ligation. In wild-type (WT) muscle, we observed an upregulation of PN-1 mRNA and protein after ischemia. Angiography analysis showed that femoral artery perfusion was more rapidly restored in PN-1-/- mice than in WT mice. Moreover, immunohistochemistry showed that capillary density increased following ischemia to a greater extent in PN-1-/- than in WT muscles. Moreover, leukocyte recruitment and IL-6 and MCP-1 levels were also increased in PN-1-/- mice compared to WT after ischemia. This increase was accompanied by a higher overexpression of the growth factor midkine, known to promote leukocyte trafficking and to modulate expression of proinflammatory cytokines. Our results thus suggest that the higher expression of midkine observed in PN-1- deficient mice can increase leukocyte recruitment in response to higher levels of MCP-1, finally driving neoangiogenesis. Thus, PN-1 can limit neovascularisation in pathological conditions, including post-ischemic reperfusion of the lower limbs.


Asunto(s)
Arteria Femoral/metabolismo , Miembro Posterior/metabolismo , Isquemia/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Serpina E2/metabolismo , Animales , Capilares/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Extremidad Inferior/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Perfusión/métodos , Flujo Sanguíneo Regional/fisiología
3.
Front Cardiovasc Med ; 8: 652852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869311

RESUMEN

The balance between proteases and protease inhibitors plays a critical role in tissue remodeling during cardiovascular diseases. Different serine protease inhibitors termed serpins, which are expressed in the cardiovascular system, can exert a fine-tuned regulation of protease activities. Among them, protease nexin-1 (PN-1, encoded by SERPINE2) is a very powerful thrombin inhibitor and can also inactivate plasminogen activators and plasmin. Studies have shown that this serpin is expressed by all cell subpopulations in the vascular wall and by circulating cells but is barely detectable in plasma in the free form. PN-1 present in platelet granules and released upon activation has been shown to present strong antithrombotic and antifibrinolytic properties. PN-1 has a broad spectrum of action related to both hemostatic and blood vessel wall protease activities. Different studies showed that PN-1 is not only an important protector of vascular cells against protease activities but also a significant actor in the clearance of the complexes it forms with its targets. In this context, PN-1 overexpression has been observed in the pathophysiology of thoracic aortic aneurysms (TAA) and during the development of atherosclerosis in humans. Similarly, in the heart, PN-1 has been shown to be overexpressed in a mouse model of heart failure and to be involved in cardiac fibrosis. Overall, PN-1 appears to serve as a "hand brake" for protease activities during cardiovascular remodeling. This review will thus highlight the role of PN-1 in the cardiovascular system and deliver a comprehensive assessment of its position among serpins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...