Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(32): e2305621120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37527342

RESUMEN

Solid-state defects are attractive platforms for quantum sensing and simulation, e.g., in exploring many-body physics and quantum hydrodynamics. However, many interesting properties can be revealed only upon changes in the density of defects, which instead is usually fixed in material systems. Increasing the interaction strength by creating denser defect ensembles also brings more decoherence. Ideally one would like to control the spin concentration at will while keeping fixed decoherence effects. Here, we show that by exploiting charge transport, we can take some steps in this direction, while at the same time characterizing charge transport and its capture by defects. By exploiting the cycling process of ionization and recombination of NV centers in diamond, we pump electrons from the valence band to the conduction band. These charges are then transported to modulate the spin concentration by changing the charge state of material defects. By developing a wide-field imaging setup integrated with a fast single photon detector array, we achieve a direct and efficient characterization of the charge redistribution process by measuring the complete spectrum of the spin bath with micrometer-scale spatial resolution. We demonstrate a two-fold concentration increase of the dominant spin defects while keeping the T2 of the NV center relatively unchanged, which also provides a potential experimental demonstration of the suppression of spin flip-flops via hyperfine interactions. Our work paves the way to studying many-body dynamics with temporally and spatially tunable interaction strengths in hybrid charge-spin systems.

2.
Sensors (Basel) ; 21(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206130

RESUMEN

Light Detection and Ranging (LiDAR) is a 3D imaging technique, widely used in many applications such as augmented reality, automotive, machine vision, spacecraft navigation and landing. Achieving long-ranges and high-speed, most of all in outdoor applications with strong solar background illumination, are challenging requirements. In the introduction we review different 3D-ranging techniques (stereo-vision, projection with structured light, pulsed-LiDAR, amplitude-modulated continuous-wave LiDAR, frequency-modulated continuous-wave interferometry), illumination schemes (single point and blade scanning, flash-LiDAR) and time-resolved detectors for LiDAR (EM-CCD, I-CCD, APD, SPAD, SiPM). Then, we provide an extensive review of silicon- single photon avalanche diode (SPAD)-based LiDAR detectors (both commercial products and research prototypes) analyzing how each architecture faces the main challenges of LiDAR (i.e., long ranges, centimeter resolution, large field-of-view and high angular resolution, high operation speed, background immunity, eye-safety and multi-camera operation). Recent progresses in 3D stacking technologies provided an important step forward in SPAD array development, allowing to reach smaller pitch, higher pixel count and more complex processing electronics. In the conclusions, we provide some guidelines for the design of next generation SPAD-LiDAR detectors.


Asunto(s)
Fotones , Silicio , Electrónica , Imagenología Tridimensional , Iluminación
3.
Sensors (Basel) ; 21(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201576

RESUMEN

The detection of peaks shifts in Raman spectroscopy enables a fingerprint reconstruction to discriminate among molecules with neither labelling nor sample preparation. Time-resolved Raman spectroscopy is an effective technique to reject the strong fluorescence background that profits from the time scale difference in the two responses: Raman photons are scattered almost instantaneously while fluorescence shows a nanoseconds time constant decay. The combination of short laser pulses with time-gated detectors enables the collection of only those photons synchronous with the pulse, thus rejecting fluorescent ones. This review addresses time-gating issues from the sensor standpoint and identifies single photon avalanche diode (SPAD) arrays as the most suitable single-photon detectors to be rapidly and precisely time-gated without bulky, complex, or expensive setups. At first, we discuss the requirements for ideal Raman SPAD arrays, particularly focusing on the design guidelines for optimized on-chip processing electronics. Then we present some existing SPAD-based architectures, featuring specific operation modes which can be usefully exploited for Raman spectroscopy. Finally, we highlight key aspects for future ultrafast Raman platforms and highly integrated sensors capable of undistorted identification of Raman peaks across many pixels.


Asunto(s)
Avalanchas , Fotones , Electrónica , Luz , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA