Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Environ Res ; 252(Pt 4): 119021, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38685293

RESUMEN

Demand for n-3 polyunsaturated fatty acids (n-3 PUFAs) exceeds supply. Large-scale studies on effects of season and geography of n-3 PUFAs in marine fish from the Northeast Atlantic Ocean (NEAO) may be used to optimize utilization and improve nutrition security. Using a sinusoid model, seasonal cycles of n-3 PUFAs were determined and found to be species-specific and clearly pronounced for the pelagic zooplankton feeding species. The Greenland halibut showed very little seasonal variation. The n-3 PUFA content in North Sea autumn-spawning (NSAS) herring peaked in summer, while Norwegian spring-spawning (NSS) herring and mackerel had their peak in autumn. A time shift of peaks in n-3 PUFAs between the two herring stocks was detected, likely due to different spawning strategies in addition to a delay of n-3 PUFAs flux in the northern regions of the NEAO. This study demonstrates that consideration of nutrient contents, such as n-3 PUFAs, when organizing and structuring fishery approaches may improve overall nutritional yield. Based on total annual Norwegian fish landings and seasonal variation in n-3 PUFA contents, n-3 PUFAs yield could theoretically be increased from 13.79 kilo ton per year from the current fishing tactics, to 15.54 if the pelagic species were only caught during the time of their seasonal n-3 PUFA peaks. Pelagic fish is a good source for dietary n-3 PUFAs, but harvest timing will also influence n-3 PUFAs intake by human consumers. One portion of fatty fish harvested during winter/spring may not meet the weekly intake reference nutritional guidelines for n-3 PUFAs. Marine n-3 PUFAs yields also varied geographically and decreased southwards, with the lowest values in Skagerrak. This study can serve as a model to understand patterns of reproductive cycles and geographical distribution of n-3 PUFAs in fatty fish from the NEAO and the novel approach may be useful to support sustainable, seasonal fishing programmes for optimization of n-3 PUFAs yields.

2.
Sci Rep ; 14(1): 8950, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637574

RESUMEN

Detailed knowledge regarding the associations between intake of different types of seafood and meat and the risk of type 2 diabetes (T2D), and insight into possible mechanisms are warranted. In this study we aimed to evaluate the associations between intake of different types of seafood and meat and the subsequent risk of T2D using the Norwegian Mother, Father, and Child Cohort Study (MoBa), and furthermore, by using a mouse model to gain further insight into possible molecular mechanisms contributing to the associated metabolic changes. Women in MoBa who were free of pharmacologically treated diabetes at baseline (n = 60,777) were prospectively evaluated for incident T2D, identified on the basis of medication usages > 90 days after delivery, ascertained by the Norwegian Prescription Database. Dietary intake was obtained with a validated 255-item food frequency questionnaire which assessed habitual diet during the first 4-5 months of pregnancy. Metabolic phenotypes and plasma metabolome were investigated in female mice fed isocaloric diets with different types of seafood and meat mimicking the dietary intake in the human cohort. During maximum 10-year and mean (SD) 7.2 (1.6) years follow-up time, 681 (1.1%) women developed pharmacologically treated T2D. All statistical models identified a higher risk of T2D with increased shellfish intake, whereas no associations were observed for total seafood, fatty fish, total meat and red meat in the adjusted models. In mice, the shellfish-based western diet induced reduced glucose tolerance and insulin secretion compared to the diet based on lean fish, and we identified a number of metabolites elevated in plasma from shellfish-fed mice that correlated with glucose intolerance. Mice fed a western diet based on meat also exhibited reduced glucose tolerance in comparison to lean fish fed mice, whereas mice fed fatty fish, total seafood or red meat did not differ from lean fish fed mice. We observed a diet-specific metabolic signature in plasma demonstrating five distinct metabolite profiles in mice fed shellfish, fatty fish, total seafood/lean fish, a mixed diet and meat. In conclusion, these findings demonstrate that different types of seafood have different outcome on T2D risk. In women, intake of shellfish was associated with higher risk of T2D. In female mice, a shellfish enriched diet reduced glucose tolerance and altered the abundance of several distinct plasma metabolites correlating with glucose tolerance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta , Animales , Femenino , Humanos , Embarazo , Estudios de Cohortes , Diabetes Mellitus Tipo 2/etiología , Dieta Occidental , Glucosa , Carne , Estudios Prospectivos , Alimentos Marinos , Ratones
4.
mSystems ; 9(2): e0104323, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294254

RESUMEN

Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.


Asunto(s)
Infecciones por Cestodos , Microbioma Gastrointestinal , Enfermedades Parasitarias , Salmo salar , Humanos , Animales , Microbioma Gastrointestinal/genética , Acuicultura , Disbiosis/veterinaria
5.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958519

RESUMEN

Altered hepatic mitochondrial fatty acid ß-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid ß-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid ß-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid ß-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid ß-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.


Asunto(s)
Malatos , Ácido Pirúvico , Ratas , Animales , Masculino , Ratas Wistar , Malatos/metabolismo , Ácido Pirúvico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hígado/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Cuerpos Cetónicos/metabolismo , Succinatos/metabolismo
6.
Food Res Int ; 173(Pt 2): 113450, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803779

RESUMEN

In this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.


Asunto(s)
Dieta Occidental , Perciformes , Ratones , Masculino , Animales , Dieta Occidental/efectos adversos , Glucemia/metabolismo , Colina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Ácidos Grasos Monoinsaturados
7.
J Hazard Mater ; 457: 131758, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37320901

RESUMEN

Bioaccumulation of persistent organic pollutants (POPs) in marine fish may pose a health risk to human consumers. Using data from ∼8400 individuals of 15 fish species collected in the North-East Atlantic Ocean (NEAO), we assessed concentrations of individual POP congeners, including dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). POPs analyses were performed with accredited methods using high-resolution gas chromatography/high-resolution mass spectrometry, gas chromatography/tandem mass spectrometry (GC-MS/MS) and GC/MS. The results showed that POPs congener composition profiles were more influenced by fish species than by geography. However, due to long range transport from emissions at lower latitudes, lighter congeners made a larger contribution to the total POPs concentrations in the northernmost areas compared to southern regions. A model was developed to elucidate the relative effects of several factors on POPs concentrations and showed that variation among and within fish species was associated with fat content, fish size, trophic position, and latitude. For the first time, POPs concentrations were shown to increase nonlinearly with fat content, reaching an asymptotic plateau when fat content was > 10%. This study explored detailed POP congener profiles and the factors associated with POPs accumulation in commercially relevant fish harvested from the NEAO.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Químicos del Agua , Humanos , Animales , Contaminantes Orgánicos Persistentes , Espectrometría de Masas en Tándem , Cromatografía de Gases y Espectrometría de Masas , Bifenilos Policlorados/análisis , Contaminantes Ambientales/análisis , Peces , Éteres Difenilos Halogenados/análisis , Océano Atlántico , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
8.
Food Res Int ; 169: 112927, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254353

RESUMEN

Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.


Asunto(s)
Ácidos Grasos Omega-3 , Mytilus edulis , Salmo salar , Animales , Ratones , Dieta Occidental , Ácidos Grasos/metabolismo , Mytilus edulis/metabolismo , Obesidad , Salmo salar/metabolismo , Alimentos Marinos
9.
ISME J ; 17(5): 682-692, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36807409

RESUMEN

Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.


Asunto(s)
Microbioma Gastrointestinal , Salmo salar , Salmonidae , Animales , Bacterias
10.
Foods ; 11(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36553687

RESUMEN

Suboptimal iodine status is a prominent public health issue in several European coun-tries. Brown algae have a high iodine content that, upon intake, may exceed the recommended dietary intake level, but iodine bioavailability has been reported to be lower than from potassium iodide (KI) and highly depends on algae species. Further, potential negative effects from other components in algae, such as cadmium (Cd) and arsenic (As), have also been addressed. In this study, we observed a lower bioavailability of iodine from farmed sugar kelp (Saccharina latissima) than from KI in female Wistar IGS rats. Urinary iodine excretion was 94-95% in rats fed KI and 73-81% in rats fed sugar kelp, followed by increased faecal iodine levels in rats fed sugar kelp. No effects on body weight, feed efficiency, or plasma markers for liver or kidney damage were detected. The highest dose of iodine reduced plasma free thyroxine (fT4) and total T4 levels, but no significant effects on circulating levels of thyroid-stimulating hormone (TSH) and free triiodo-thyronine (fT3) were detected. Faeces and urine measurements indicate that 60-80% of total As and 93% of Cd ingested were excreted in rats fed 0.5 and 5% kelp. Liver metabolomic profiling demonstrates that a high inclusion of sugar kelp in the diet for 13 weeks of feeding modulates metabolites with potential antioxidant activity and phytosterols.

11.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293098

RESUMEN

Methylmercury (MeHg) is a well-known environmental contaminant, particularly harmful to the developing brain. The main human dietary exposure to MeHg occurs through seafood consumption. However, seafood also contains several nutrients, including selenium, which has been shown to interact with MeHg and potentially ameliorate its toxicity. The aim of this study was to investigate the combined effects of selenium (as selenomethionine; SeMet) and MeHg on mercury accumulation in tissues and the effects concomitant dietary exposure of these compounds exert on the hippocampal proteome and transcriptome in mice. Adolescent male BALB/c mice were exposed to SeMet and two different doses of MeHg through their diet for 11 weeks. Organs, including the brain, were sampled for mercury analyses. Hippocampi were collected and analyzed using proteomics and transcriptomics followed by multi-omics bioinformatics data analysis. The dietary presence of SeMet reduced the amount of mercury in several organs, including the brain. Proteomic and RNA-seq analyses showed that both protein and RNA expression patterns were inversely regulated in mice receiving SeMet together with MeHg compared to MeHg alone. Several pathways, proteins and RNA transcripts involved in conditions such as immune responses and inflammation, oxidative stress, cell plasticity and Alzheimer's disease were affected inversely by SeMet and MeHg, indicating that SeMet can ameliorate several toxic effects of MeHg in mice.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Masculino , Adolescente , Animales , Humanos , Ratones , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/análisis , Selenometionina/farmacología , Transcriptoma , Selenio/metabolismo , Proteoma/metabolismo , Proteómica , Ratones Endogámicos BALB C , Dieta , Antioxidantes , Hipocampo/metabolismo , ARN
12.
Food Chem ; 373(Pt B): 131445, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34731805

RESUMEN

The changes in the feed of farmed Atlantic salmon (Salmo salar) towards a more plant-based diet affect the nutritional value of the fillets. By compiling the contents of a range of nutrients in 1108 samples of Norwegian farmed Atlantic salmon collected between 2005 and 2020, we found that the median contents of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) have decreased by > 60%. However, farmed Atlantic salmon remains a considerable source of EPA and DHA, with one and two portions being sufficient to meet the weekly adequate intake of EPA and DHA for adults (175 g) and two-year-olds (80 g), respectively. Farmed Atlantic salmon also remains a considerable source of protein, selenium, vitamin B12, and vitamin D3. Together, we demonstrate that farmed Atlantic salmon can contribute substantially to the nutrient intake of the consumers. These data are important for the Norwegian food composition table and future risk-benefit assessments on fatty fish consumption.


Asunto(s)
Salmo salar , Alimentación Animal/análisis , Animales , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Nutrientes , Alimentos Marinos
13.
Sci Rep ; 11(1): 21839, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750429

RESUMEN

The intimate association between obesity and type II diabetes urges for a deeper understanding of adipocyte function. We and others have previously delineated a role for the tumor suppressor p53 in adipocyte biology. Here, we show that mice haploinsufficient for MDM2, a key regulator of p53, in their adipose stores suffer from overt obesity, glucose intolerance, and hepatic steatosis. These mice had decreased levels of circulating palmitoleic acid [non-esterified fatty acid (NEFA) 16:1] concomitant with impaired visceral adipose tissue expression of Scd1 and Ffar4. A similar decrease in Scd and Ffar4 expression was found in in vitro differentiated adipocytes with perturbed MDM2 expression. Lowered MDM2 levels led to nuclear exclusion of the transcriptional cofactors, MORC2 and LIPIN1, and thereby possibly hampered adipocyte function by antagonizing LIPIN1-mediated PPARγ coactivation. Collectively, these data argue for a hitherto unknown interplay between MDM2 and MORC2/LIPIN1 involved in balancing adipocyte function.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Resistencia a la Insulina/fisiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Monoinsaturados/sangre , Hígado Graso/genética , Hígado Graso/metabolismo , Femenino , Redes Reguladoras de Genes , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Haploinsuficiencia/genética , Haploinsuficiencia/fisiología , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/metabolismo , Fosfatidato Fosfatasa , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
14.
Front Cell Infect Microbiol ; 11: 708088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692558

RESUMEN

Comprehensive analyses of multi-omics data may provide insights into interactions between different biological layers concerning distinct clinical features. We integrated data on the gut microbiota, blood parameters and urine metabolites of treatment-naive individuals presenting a wide range of metabolic disease phenotypes to delineate clinically meaningful associations. Trans-omics correlation networks revealed that candidate gut microbial biomarkers and urine metabolite feature were covaried with distinct clinical phenotypes. Integration of the gut microbiome, the urine metabolome and the phenome revealed that variations in one of these three systems correlated with changes in the other two. In a specific note about clinical parameters of liver function, we identified Eubacteriumeligens, Faecalibacteriumprausnitzii and Ruminococcuslactaris to be associated with a healthy liver function, whereas Clostridium bolteae, Tyzzerellanexills, Ruminococcusgnavus, Blautiahansenii, and Atopobiumparvulum were associated with blood biomarkers for liver diseases. Variations in these microbiota features paralleled changes in specific urine metabolites. Network modeling yielded two core clusters including one large gut microbe-urine metabolite close-knit cluster and one triangular cluster composed of a gut microbe-blood-urine network, demonstrating close inter-system crosstalk especially between the gut microbiome and the urine metabolome. Distinct clinical phenotypes are manifested in both the gut microbiome and the urine metabolome, and inter-domain connectivity takes the form of high-dimensional networks. Such networks may further our understanding of complex biological systems, and may provide a basis for identifying biomarkers for diseases. Deciphering the complexity of human physiology and disease requires a holistic and trans-omics approach integrating multi-layer data sets, including the gut microbiome and profiles of biological fluids. By studying the gut microbiome on carotid atherosclerosis, we identified microbial features associated with clinical parameters, and we observed that groups of urine metabolites correlated with groups of clinical parameters. Combining the three data sets, we revealed correlations of entities across the three systems, suggesting that physiological changes are reflected in each of the omics. Our findings provided insights into the interactive network between the gut microbiome, blood clinical parameters and the urine metabolome concerning physiological variations, and showed the promise of trans-omics study for biomarker discovery.


Asunto(s)
Enfermedades de las Arterias Carótidas , Microbioma Gastrointestinal , Biomarcadores , Clostridiales , Humanos , Metaboloma , Metabolómica
15.
Environ Int ; 157: 106858, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530291

RESUMEN

Marine fish from the North East Atlantic Ocean (NEAO) are nutrient rich and considered a valuable economic resource. However, marine fish are also a major dietary source of several contaminants, including persistent organic pollutants (POPs) and heavy metals. Using one of the world's largest seafood datasets (n > 25,000 individuals), comprising 12 commercially important fish species collected during 2006-2019 in the NEAO, we assessed the co-occurrence of elements and POPs, and evaluated potential risks to human consumers. Several positive correlations between concentrations of mercury (Hg), dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were observed. Concentrations of Hg, dioxins, PCBs and PBDEs increased from North to South and associations between marine sediment contamination, sea temperature, and fish Hg and POPs concentrations were identified using multi-linear regression (MLR) models. In general, Hg concentrations in fillet and liver of fish were positively associated with increases in both sediment contamination and sea temperature. POPs concentrations in both fillet and liver were positively associated with increases in sediment contamination, and only POPs concentrations in the liver of benthopelagic and demersal species were found to be positively correlated with sea temperature. Using a probabilistic approach to estimate human contaminant exposure from seafood, we showed that intake of pelagic species posed the highest risk of dioxins and dioxin-like PCBs (DL-PCBs) exposure, while intake of benthopelagic and demersal species posed the highest risk of Hg exposure. This study can serve as a model to further understand the distribution, co-occurrence, and trends of contaminants in seafood harvested from the NEAO and their potential risks to human consumers.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Océano Atlántico , Peces , Éteres Difenilos Halogenados/análisis , Humanos , Bifenilos Policlorados/análisis , Medición de Riesgo , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis
16.
Diabetes Care ; 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34407960

RESUMEN

OBJECTIVE: To investigate associations between intakes of total fish, lean fish, fatty fish, and long-chain n-3 polyunsaturated fatty acid (LCn-3PUFA) supplements and risk of type 2 diabetes in women after pregnancy. Furthermore, we sought to compare the estimated intakes of methylmercury (MeHg) and sum of dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) with tolerable weekly intakes (TWI). RESEARCH DESIGN AND METHODS: Women free of diabetes at baseline (n = 60,831) who participated in the population-based Norwegian Mother, Father and Child Cohort Study (MoBa) were prospectively evaluated for incident type 2 diabetes, identified on the basis of medication usage >90 days after delivery, ascertained through the Norwegian Prescription Database. Dietary intake data were obtained with a validated 255-item food-frequency questionnaire (FFQ), which assessed habitual diet during the first 4-5 months of pregnancy. Intakes of MeHg and sum of dioxins and dl-PCBs were derived with use of a contaminant database and the FFQ. RESULTS: Median age was 31 years (interquartile range 27, 34) at time of delivery, and follow-up time was 7.5 years (6.5, 8.5). Type 2 diabetes occurred in 683 (1.1%) participants. Multivariable Cox regression analyses identified lower risk of type 2 diabetes with increasing energy-adjusted lean fish intake, 25 g/1,000 kcal (25 g/1,000 kcal: hazard ratio 0.71, 95% CI 0.53-0.95, P = 0.022). However, in stratified analyses, a lower risk was found only in women with prepregnancy BMI ≥25 kg/m2. There were no associations between intake of total fish, fatty fish, or LCn-3PUFA supplements and type 2 diabetes. MeHg intake was low, but the intake of the sum of dioxins and dl-PCBs (picograms of toxic equivalents/kilograms of body weight/week) exceeded the TWI set by the European Food Safety Authority (EFSA) for the majority of participants. CONCLUSIONS: Intake of lean fish, but not fatty fish or LCn-3PUFA supplements, was associated with lower risk of pharmacologically treated type 2 diabetes in Norwegian women who were overweight or obese. Fatty fish, which contain dioxins and dl-PCBs, did not increase the risk of type 2 diabetes, but the exceedance of the EFSA TWI for dioxins and dl-PCBs is a health concern.

17.
Metallomics ; 13(5)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33890672

RESUMEN

Methylmercury (MeHg) is a highly neurotoxic form of mercury (Hg) present in seafood. Here, we recorded and compared proteomic and transcriptomic changes in hippocampus of male BALB/c mice exposed to two doses of MeHg. Mice were fed diets spiked with 0.28 mg MeHg kg-1, 5 mg MeHg kg-1, or an unspiked control diet for 77 days. Total mercury content was significantly (P < 0.05) increased in brain tissue of both MeHg-exposed groups (18 ± 2 mg Hg kg-1 and 0.56 ± 0.06 mg Hg kg-1). Hippocampal protein and ribonucleic acid (RNA) expression levels were significantly altered both in tissues from mice receiving a low dose MeHg (20 proteins/294 RNA transcripts) and a high dose MeHg (61 proteins/876 RNA transcripts). The majority but not all the differentially expressed features in hippocampus were dose dependent. The combined use of transcriptomic and proteomic profiling data provided insight on the influence of MeHg on neurotoxicity, energy metabolism, and oxidative stress through several regulated features and pathways, including RXR function and superoxide radical degradation.


Asunto(s)
Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Compuestos de Metilmercurio/farmacología , Estrés Oxidativo , Proteoma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Perfilación de la Expresión Génica , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C
18.
Food Nutr Res ; 652021.
Artículo en Inglés | MEDLINE | ID: mdl-33889064

RESUMEN

BACKGROUND: Seaweeds and kelps, also known as macroalgae, have long been common in the East-Asian diet. During recent years, macroalgae have entered the global food market, and a variety of macroalgae products are now available for consumers. Some macroalgae species are known to be particularly rich in iodine, but little data regarding the iodine content of macroalgae-containing foods exists. OBJECTIVE: The aim of this research study was to analyse the iodine content in a large variety of commercially available macroalgae-containing foods and supplements and to evaluate whether such products are sources of adequate dietary iodine. DESIGN: Ninety-six different products were collected after surveying the Norwegian market for commercially available macroalgae products, collected from three categories: 1) wholefood macroalgae products (n = 43), 2) macroalgae-containing foods (n = 39), and 3) dietary supplements containing macroalgae (n = 14). All products were analysed for iodine content by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS: The iodine content in one portion of wholefood macroalgae products ranged from 128 to 62,400 µg. In macroalgae-containing foods, the iodine content ranged from 30 to 25,300 µg per portion, and in supplements it ranged from 5 to 5,600 µg per daily dose. The species with the highest analysed iodine content were oarweed, sugarkelp and kombu, with mean iodine levels of 7,800, 4,469 and 2,276 µg/g, respectively. For 54 products, the intake of one portion or dose would exceed the tolerable upper intake level (UL) for iodine. DISCUSSION AND CONCLUSION: The iodine content in the included products was variable and for most products high, exceeding the tolerable upper intake level (UL) if consumed as a serving or portion size. The labelling of macroalgae species included, and declaration of iodine content, were inadequate or inaccurate for several products. As macroalgae-containing products are unreliable iodine sources, inclusion of such products in the diet may pose a risk of consuming excessive amounts of iodine.

19.
mSphere ; 6(1)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627510

RESUMEN

High-quality and comprehensive reference gene catalogs are essential for metagenomic research. The rather low diversity of samples used to construct existing catalogs of the mouse gut metagenome limits the numbers of identified genes in existing catalogs. We therefore established an expanded catalog of genes in the mouse gut metagenome (EMGC) containing >5.8 million genes by integrating 88 newly sequenced samples, 86 mouse gut-related bacterial genomes, and 3 existing gene catalogs. EMGC increases the number of nonredundant genes by more than 1 million genes compared to the so-far most extensive catalog. More than 60% of the genes in EMGC were assigned to Bacteria, with 54.20% being assigned to a phylum and 35.33% to a genus, while 30.39% were annotated at the KEGG orthology level. Nine hundred two metagenomic species (MGS) assigned to 122 taxa are identified based on the EMGC. The EMGC-based analysis of samples from groups of mice originating from different animal providers, housing laboratories, and genetic strains substantiated that diet is a major contributor to differences in composition and functional potential of the gut microbiota irrespective of differences in environment and genetic background. We envisage that EMGC will serve as a valuable reference data set for future metagenomic studies in mice.IMPORTANCE We established an expanded gene catalog of the mouse gut metagenome not only to increase the sample size compared to that in existing catalogs but also to provide a more comprehensive reference data set of the mouse gut microbiome for bioinformatic analysis. The expanded gene catalog comprises more than 5.8 million unique genes, as well as a wide range of taxonomic and functional information. Particularly, the analysis of metagenomic species with the expanded gene catalog reveals a great novelty of mouse gut-inhabiting microbial species. We envisage that the expanded gene catalog of the mouse gut metagenome will serve as a valuable bioinformatic resource for future gut metagenomic studies in mice.


Asunto(s)
Bacterias/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Metagenoma , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biología Computacional/métodos , Heces/microbiología , Masculino , Metagenómica , Ratones , Ratones Endogámicos C57BL , Filogenia
20.
Nat Commun ; 12(1): 1093, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597537

RESUMEN

Interactions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.


Asunto(s)
Intestino Grueso/inmunología , Intestino Delgado/inmunología , Methylococcus capsulatus/inmunología , Microbiota/inmunología , Proteínas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Dieta , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Homeostasis/inmunología , Interleucina-17/inmunología , Interleucina-17/metabolismo , Intestino Grueso/metabolismo , Intestino Grueso/microbiología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Methylococcus capsulatus/química , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Obesidad/inmunología , Proteínas/metabolismo , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...