Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 24(15): 6338-6353, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39131446

RESUMEN

Anionic macromolecules are found at sites of CaCO3 biomineralization in diverse organisms, but their roles in crystallization are not well-understood. We prepared a series of sulfated chitosan derivatives with varied positions and degrees of sulfation, DS(SO3 -), and measured calcite nucleation rate onto these materials. Fitting the classical nucleation theory model to the kinetic data reveals the interfacial free energy of the calcite-polysaccharide-solution system, γnet, is lowest for nonsulfated controls and increases with DS(SO3 -). The kinetic prefactor also increases with DS(SO3 -). Simulations of Ca2+-H2O-chitosan systems show greater water structuring around sulfate groups compared to uncharged substituents, independent of sulfate location. Ca2+-SO3 - interactions are solvent-separated by distances that are inversely correlated with DS(SO3 -) of the polysaccharide. The simulations also predict SO3 - and NH3 + groups affect the solvation waters and HCO3 - ions associated with Ca2+. Integrating the experimental and computational evidence suggests sulfate groups influence nucleation by increasing the difficulty of displacing near-surface water, thereby increasing γnet. By correlating γnet and net charge per monosaccharide for diverse polysaccharides, we suggest the solvent-separated interactions of functional groups with Ca2+ influence thermodynamic and kinetic components to crystallization by similar solvent-dominated processes. The findings reiterate the importance of establishing water structure and properties at macromolecule-solution interfaces.

2.
Adv Mater ; 36(24): e2312513, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38288908

RESUMEN

Polymer electrolytes have received tremendous interest in the development of solid-state batteries, but often fall short in one or more key properties required for practical applications. Herein, a rigid gel polymer electrolyte prepared by immobilizing a liquid mixture of a lithium salt and poly(ethylene glycol) dimethyl ether with only 8 wt% poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) is reported. The high charge density and rigid double helical structure of PBDT lead to formation of a nanofibrillar structure that endows this electrolyte with stronger mechanical properties, wider temperature window, and higher battery rate capability compared to all other poly(ethylene oxide) (PEO)-based electrolytes. The ion transport mechanism in this rigid polymer electrolyte is systematically studied using multiple complementary techniques. Li/LiFePO4 cells show excellent capacity retention over long-term cycling, with thermal cycling reversibility between ambient temperature and elevated temperatures, demonstrating compelling potential for solid-state batteries targeting fast charging at high temperatures and slower discharging at ambient temperature.

3.
J Am Chem Soc ; 145(30): 16538-16547, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466049

RESUMEN

Solid-electrolyte interphases (SEIs) in advanced rechargeable batteries ensure reversible electrode reactions at extreme potentials beyond the thermodynamic stability limits of electrolytes by insulating electrons while allowing the transport of working ions. Such selective ion transport occurs naturally in biological cell membranes as a ubiquitous prerequisite of many life processes and a foundation of biodiversity. In addition, cell membranes can selectively open and close the ion channels in response to external stimuli (e.g., electrical, chemical, mechanical, and thermal), giving rise to "gating" mechanisms that help manage intracellular reactions. We wondered whether the chemistry and structure of SEIs can mimic those of cell membranes, such that ion gating can be replicated. That is, can SEIs realize a reversible switching between two electrochemical behaviors, i.e., the ion intercalation chemistry of batteries and the ion adsorption of capacitors? Herein, we report such SEIs that result in thermally activated selective ion transport. The function of open/close gate switches is governed by the chemical and structural dynamics of SEIs under different thermal conditions, with precise behaviors as conducting and insulating interphases that enable battery and capacitive processes within a finite temperature window. Such an ion gating function is synergistically contributed by Arrhenius-activated ion transport and SEI dissolution/regrowth. Following the understanding of this new mechanism, we then develop an electrochemical method to heal the SEI layer in situ. The knowledge acquired in this work reveals the possibility of hitherto unknown biomimetic properties of SEIs, which will guide us to leverage such complexities to design better SEIs for future battery chemistries.

4.
Biomacromolecules ; 24(6): 2596-2605, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37262428

RESUMEN

Site-specific modification is a great challenge for polysaccharide scientists. Chemo- and regioselective modification of polysaccharide chains can provide many useful natural-based materials and help us illuminate fundamental structure-property relationships of polysaccharide derivatives. The hemiacetal reducing end of a polysaccharide is in equilibrium with its ring-opened aldehyde form, making it the most uniquely reactive site on the polysaccharide molecule, ideal for regioselective decoration such as imine formation. However, all natural polysaccharides, whether they are branched or not, have only one reducing end per chain, which means that only one aldehyde-reactive substituent can be added. We introduce a new approach to selective functionalization of polysaccharides as an entrée to useful materials, appending multiple reducing ends to each polysaccharide molecule. Herein, we reduce the approach to practice using amide formation. Amine groups on monosaccharides such as glucosamine or galactosamine can react with carboxyl groups of polysaccharides, whether natural uronic acids like alginates, or derivatives with carboxyl-containing substituents such as carboxymethyl cellulose (CMC) or carboxymethyl dextran (CMD). Amide formation is assisted using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). By linking the C2 amines of monosaccharides to polysaccharides in this way, a new class of polysaccharide derivatives possessing many reducing ends can be obtained. We refer to this class of derivatives as multi-reducing-end polysaccharides (MREPs). This new family of derivatives creates the potential for designing polysaccharide-based materials with many potential applications, including in hydrogels, block copolymers, prodrugs, and as reactive intermediates for other derivatives.


Asunto(s)
Alginatos , Polisacáridos , Polisacáridos/química , Alginatos/química , Monosacáridos , Aldehídos , Amidas
5.
ACS Energy Lett ; 8(4): 1944-1951, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090169

RESUMEN

Lithium batteries rely crucially on fast charge and mass transport of Li+ in the electrolyte. For liquid and polymer electrolytes with added lithium salts, Li+ couples to the counter-anion to form ionic clusters that produce inefficient Li+ transport and lead to Li dendrite formation. Quantification of Li+ transport in glycerol-salt electrolytes via NMR experiments and MD simulations reveals a surprising Li+-hopping mechanism. The Li+ transference number, measured by ion-specific electrophoretic NMR, can reach 0.7, and Li+ diffusion does not correlate with nearby ion motions, even at high salt concentration. Glycerol's high density of hydroxyl groups increases ion dissociation and slows anion diffusion, while the close proximity of hydroxyls and anions lowers local energy barriers, facilitating Li+ hopping. This system represents a bridge between liquid and inorganic solid electrolytes, thus motivating new molecular designs for liquid and polymer electrolytes to enable the uncorrelated Li+-hopping transport needed for fast-charging and all-solid-state batteries.

6.
J Phys Chem B ; 125(50): 13767-13777, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34898212

RESUMEN

We present an investigation of the dynamics of water confined among rigid carbon rods and between parallel graphene sheets with molecular dynamics simulations. Diffusion coefficients, activation energy of diffusion, and residence-time correlation functions as a function of confinement geometry reveal a retardation of water dynamics under hydrophobic confinement compared to bulk water. In fact, water under various confinements possesses longer associations with its neighbors and exhibits diffusion dynamics characteristic of a lower temperature. Analysis of the residence-time correlation functions reveals long and short residence times, which we relate to the diffusion coefficient and activation energy of diffusion, respectively. Additional investigations reveal how the level of confining surface hydrophobicity affects water dynamics, further broadening our understanding of water diffusion inside diverse media. Overall, this study sheds light on the physical origin of retarded water dynamics under hydrophobic confinement and the close relationship between residence times and diffusion behavior.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Difusión , Interacciones Hidrofóbicas e Hidrofílicas , Temperatura
7.
Chem Sci ; 12(10): 3702-3712, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34163644

RESUMEN

Photoredox ring-opening polymerization of O-carboxyanhydrides allows for the synthesis of polyesters with precisely controlled molecular weights, molecular weight distributions, and tacticities. While powerful, obviating the use of precious metal-based photocatalysts would be attractive from the perspective of simplifying the protocol. Herein, we report the Co and Zn catalysts that are activated by external light to mediate efficient ring-opening polymerization of O-carboxyanhydrides, without the use of exogenous precious metal-based photocatalysts. Our methods allow for the synthesis of isotactic polyesters with high molecular weights (>200 kDa) and narrow molecular weight distributions (M w/M n < 1.1). Mechanistic studies indicate that light activates the oxidative status of a CoIII intermediate that is generated from the regioselective ring-opening of the O-carboxyanhydride. We also demonstrate that the use of Zn or Hf complexes together with Co can allow for stereoselective photoredox ring-opening polymerizations of multiple racemic O-carboxyanhydrides to synthesize syndiotactic and stereoblock copolymers, which vary widely in their glass transition temperatures.

8.
J Sex Res ; 58(7): 914, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34080952
9.
Nat Mater ; 20(9): 1255-1263, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33941912

RESUMEN

A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with the use of high-energy-density electrodes. We describe molecular ionic composite electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS cm-1 at 25 °C) and electrochemical stability (5.6 V versus Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω cm2) and overpotentials (≤120 mV at 1 mA cm-2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer-ion assembly to incorporate an inter-grain network filled with defective LiFSI and LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes.

10.
Macromolecules ; 54(14): 6975-6981, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36910585

RESUMEN

Polymeric micelles coexist in solution with unassembled chains (unimers). We have investigated the influence of glass transition temperature (T g) (i.e., chain mobility) of the micelle core-forming blocks on micelle-unimer coexistence. We synthesized a series of seven PEG-b-P(nBA-ran-tBA) amphiphilic block copolymers (PEG = poly(ethylene glycol), nBA = n-butyl acrylate, tBA = tert-butyl acrylate) with similar molecular weights (12 kg/mol). Varying the nBA/tBA molar ratio enabled broad modulation of core block T g with no significant change in core hydrophobicity or micelle size. NMR diffusometry revealed increasing unimer populations from 0% to 54% of total polymer concentration upon decreasing core block T g from 25 to -46 °C. Additionally, unimer population at fixed polymer composition (and thus core T g) increased with temperature. This study demonstrates the strong influence of core-forming block mobility on polymer self-assembly, providing information toward designing drug delivery systems and suggesting the need for new dynamical theory.

11.
Nat Commun ; 11(1): 830, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047162

RESUMEN

Combining polymers with small amounts of stiff carbon-based nanofillers such as graphene or graphene oxide is expected to yield low-density nanocomposites with exceptional mechanical properties. However, such nanocomposites have remained elusive because of incompatibilities between fillers and polymers that are further compounded by processing difficulties. Here we report a water-based process to obtain highly reinforced nanocomposite films by simple mixing of two liquid crystalline solutions: a colloidal nematic phase comprised of graphene oxide platelets and a nematic phase formed by a rod-like high-performance aramid. Upon drying the resulting hybrid biaxial nematic phase, we obtain robust, structural nanocomposites reinforced with graphene oxide.

12.
ACS Macro Lett ; 9(7): 957-963, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648607

RESUMEN

We report irreversible, shear-activated gelation in liquid crystalline solutions of a rigid polyelectrolyte that forms rodlike assemblies (rods) in salt-free solution. At rest, the liquid crystalline solutions are kinetically stable against gelation and exhibit low viscosities. Under steady shear at, or above, a critical shear rate, a physically cross-linked, nematic gel network forms due to linear growth and branching of the rods. Above a critical shear rate, the time scale of gelation can be tuned from hours to nearly instantaneously by varying the shear rate and solution concentration. The shear-activated gels are distinct in their structure and rheological properties from thermoreversible gels. At a fixed concentration, the induction time prior to gelation decreases exponentially with the shear rate. This result indicates that shear-activated thermalization of the electrostatically stabilized rods overcomes the energy barrier for rod-rod contact, enabling rod fusion and subsequent irreversible network formation.

13.
ACS Appl Mater Interfaces ; 11(43): 40551-40563, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31507155

RESUMEN

Polymer electrolyte membranes (PEMs) with high volume fractions of ionic liquids (IL) and high modulus show promise for enabling next-generation gas separations, and electrochemical energy storage and conversion applications. Herein, we present a conductive polymer-IL composite based on a sulfonated all-aromatic polyamide (sulfo-aramid, PBDT) and a model IL, which we term a PBDT-IL composite. The polymer forms glassy and high-aspect-ratio hierarchical nanofibrils, which enable fabrication of PEMs with both high volume fractions of IL and high elastic modulus. We report direct evidence for nanofibrillar networks that serve as matrices for dispersed ILs using atomic force microscopy and small- and wide-angle X-ray scattering. These supramolecular nanofibrils form through myriad noncovalent interactions to produce a physically cross-linked glassy network, which boasts the best combination of room-temperature modulus (0.1-2 GPa) and ionic conductivity (8-4 mS cm-1) of any polymer-IL electrolyte reported to date. The ultrahigh thermomechanical properties of our PBDT-IL composites provide high moduli (∼1 GPa) at temperatures up to 200 °C, enabling a wide device operation window with stable mechanical properties. Together, the high-performance nature of sulfo-aramids in concert with the inherent properties of ILs imparts PBDT-IL composites with nonflammability and thermal stability up to 350 °C. Thus, nanofibrillar ionic networks based on sulfo-aramids and ILs represent a new design paradigm affording PEMs with exceptionally high moduli at exceedingly low polymer concentrations. This new design strategy will drive the development of new high-performance conductive membranes that can be used for the design of gas separation membranes and in electrochemical applications, such as fuel cells and Li-metal batteries.

14.
Nat Commun ; 10(1): 801, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778067

RESUMEN

The ubiquitous biomacromolecule DNA has an axial rigidity persistence length of ~50 nm, driven by its elegant double helical structure. While double and multiple helix structures appear widely in nature, only rarely are these found in synthetic non-chiral macromolecules. Here we report a double helical conformation in the densely charged aromatic polyamide poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) or PBDT. This double helix macromolecule represents one of the most rigid simple molecular structures known, exhibiting an extremely high axial persistence length (~1 micrometer). We present X-ray diffraction, NMR spectroscopy, and molecular dynamics (MD) simulations that reveal and confirm the double helical conformation. The discovery of this extreme rigidity in combination with high charge density gives insight into the self-assembly of molecular ionic composites with high mechanical modulus (~ 1 GPa) yet with liquid-like ion motions inside, and provides fodder for formation of other 1D-reinforced composites.


Asunto(s)
Ftalimidas/química , Polielectrolitos/química , Polímeros/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica Molecular , Difracción de Rayos X
15.
ACS Macro Lett ; 8(2): 107-112, 2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35619416

RESUMEN

The order-to-disorder transition temperature (TODT) in a series of mixtures of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is identified by the disappearance of a quadrupolar 7Li NMR triplet peak splitting above a critical temperature, where a singlet is observed. The macroscopic alignment of ordered domains required to produce a quadrupolar splitting occurs due to exposure to the NMR magnetic field. Alignment is confirmed using small-angle X-ray scattering (SAXS). The TODT determined by NMR is consistent with that determined using SAXS.

16.
J Phys Chem B ; 122(4): 1537-1544, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355016

RESUMEN

Nanostructured block copolymer electrolytes have the potential to enable solid-state batteries with lithium metal anodes. We present complete continuum characterization of ion transport in a lamellar polystyrene-b-poly(ethylene oxide) copolymer/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte as a function of salt concentration. Electrochemical measurements are used to determine the Stefan-Maxwell salt diffusion coefficients [Formula: see text], [Formula: see text], and [Formula: see text]. Individual self-diffusion coefficients of the lithium- and TFSI-containing species were measured by pulsed-field gradient NMR (PFG-NMR). The NMR data indicate that salt diffusion is locally anisotropic, and this enables determination of a diffusion coefficient parallel to the lamellae, D∥, and a diffusion coefficient through defects in the lamellae, D⊥. We quantify anisotropic diffusion by defining an NMR morphology factor and demonstrate that it is correlated to defect density seen by transmission electron microscopy. We find agreement between the electrochemically determined Stefan-Maxwell diffusion coefficients and the diffusion coefficient D⊥ determined by PFG-NMR. Our work indicates that the performance of nanostructured block copolymer electrolytes in batteries is strongly influenced by ion transport through defects.

17.
J Phys Chem B ; 121(21): 5439-5446, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460174

RESUMEN

Understanding the short-range molecular motions of organic ionic plastic crystals is critical for the application of these materials as solid-state electrolytes in electrochemical devices such as lithium batteries. However, the theory of short-range-motions was originally developed for simple molecular plastic crystals and does not take account of strong interionic interactions that are present in organic ionic plastic crystals. Here we report a fundamental investigation of the dynamic behavior of an archetypal example triethyl(methyl)phosphonium bis(fluorosulfonyl)amide ([P1222][FSI]) through calorimetry, impedance spectroscopy, synchrotron X-ray diffraction, and solid-state NMR and Raman spectroscopies. For the first time, we show the presence of conformational dynamics in the solid state for the FSI anion. We relate the dynamics to a unique second-order displacive phase transition of [P1222][FSI]. This detailed analysis suggests a new disorder mechanism involving cooperative motion between the cation and FSI anion in the plastic crystal due to strong interionic interactions.

18.
Langmuir ; 33(1): 322-331, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27997204

RESUMEN

The recent fabrication of liquid crystalline ion gels featuring rigid-rod polyanions aligned within room-temperature ionic liquids (RTILs) opens up exciting new avenues for engineering ion conducting materials. These gels exhibit an unusual combination of properties including high ionic conductivity, distinct transport anisotropy, and widely tunable elastic modulus. Using molecular simulations, we study the structure and dynamics of the ions in an ion gel consisting of rigid-rod polyanions and [C2mim][TfO] RTILs. We show that the ion distribution in the interstitial space between polymer rods exhibits the hallmarks of the RTIL structure near charged surfaces; i.e., cations (C2mim+) and anions (TfO-) form alternating layers around the polymer rods and the charge on the rod is overscreened by the ionic layer surrounding it. The distinct ordering of ions suggests the formation of a long-range "electrostatic network" in the ion gel, which may contribute to its mechanical cohesion and high modulus. The dynamics of both C2mim+ and TfO- ions slow down due to the fact that some C2mim+ ions become associated with the sulfonate groups of the polymer rod on nanosecond time scales, which hinders the dynamics of all ions in the gel. C2mim+ and TfO- ion diffusion in the gel are only 2-10 times slower than in bulk RTILs, which is still much faster than, e.g., Li ions in typical ion conducting polymers. This fast ion transport combined with strong mechanical cohesion open up exciting opportunities for application of these gels in electrochemical devices including Li-metal batteries.

19.
Adv Mater ; 28(13): 2571-8, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26822386

RESUMEN

A new liquid-crystalline ion gel exhibits unprecedented properties: conductivity up to 8 mS cm(-1) , thermal stability to 300 °C, and electrochemical window to 6.1 V, as well as adjustable transport anisotropy (up to 3.5×) and elastic modulus (0.03-3 GPa). The combination of ionic liquid and magnetically oriented rigid-rod polyanion provides widely tunable properties for use in diverse electrochemical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA