Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
PeerJ ; 11: e14806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36945355

RESUMEN

The gastrointestinal (GI) tract can be affected by different diseases or lesions such as esophagitis, ulcers, hemorrhoids, and polyps, among others. Some of them can be precursors of cancer such as polyps. Endoscopy is the standard procedure for the detection of these lesions. The main drawback of this procedure is that the diagnosis depends on the expertise of the doctor. This means that some important findings may be missed. In recent years, this problem has been addressed by deep learning (DL) techniques. Endoscopic studies use digital images. The most widely used DL technique for image processing is the convolutional neural network (CNN) due to its high accuracy for modeling complex phenomena. There are different CNNs that are characterized by their architecture. In this article, four architectures are compared: AlexNet, DenseNet-201, Inception-v3, and ResNet-101. To determine which architecture best classifies GI tract lesions, a set of metrics; accuracy, precision, sensitivity, specificity, F1-score, and area under the curve (AUC) were used. These architectures were trained and tested on the HyperKvasir dataset. From this dataset, a total of 6,792 images corresponding to 10 findings were used. A transfer learning approach and a data augmentation technique were applied. The best performing architecture was DenseNet-201, whose results were: 97.11% of accuracy, 96.3% sensitivity, 99.67% specificity, and 95% AUC.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Tracto Gastrointestinal/diagnóstico por imagen , Endoscopía Gastrointestinal , Diagnóstico por Computador/métodos
2.
Rev Invest Clin ; 74(6): 314-327, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36546894

RESUMEN

Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusions: ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Algoritmos , Pronóstico , Aprendizaje Automático
3.
Rev. invest. clín ; 74(6): 314-327, Nov.-Dec. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1431820

RESUMEN

ABSTRACT Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusion: ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.

4.
J Pers Med ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34945799

RESUMEN

One of the main microvascular complications presented in the Mexican population is diabetic retinopathy which affects 27.50% of individuals with type 2 diabetes. Therefore, the purpose of this study is to construct a predictive model to find out the risk factors of this complication. The dataset contained a total of 298 subjects, including clinical and paraclinical features. An analysis was constructed using machine learning techniques including Boruta as a feature selection method, and random forest as classification algorithm. The model was evaluated through a statistical test based on sensitivity, specificity, area under the curve (AUC), and receiving operating characteristic (ROC) curve. The results present significant values obtained by the model obtaining 69% of AUC. Moreover, a risk evaluation was incorporated to evaluate the impact of the predictors. The proposed method identifies creatinine, lipid treatment, glomerular filtration rate, waist hip ratio, total cholesterol, and high density lipoprotein as risk factors in Mexican subjects. The odds ratio increases by 3.5916 times for control patients which have high levels of cholesterol. It is possible to conclude that this proposed methodology is a preliminary computer-aided diagnosis tool for clinical decision-helping to identify the diagnosis of DR.

5.
Healthcare (Basel) ; 9(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535510

RESUMEN

The prevalence of diabetes mellitus is increasing worldwide, causing health and economic implications. One of the principal microvascular complications of type 2 diabetes is Distal Symmetric Polyneuropathy (DSPN), affecting 42.6% of the population in Mexico. Therefore, the purpose of this study was to find out the predictors of this complication. The dataset contained a total number of 140 subjects, including clinical and paraclinical features. A multivariate analysis was constructed using Boruta as a feature selection method and Random Forest as a classification algorithm applying the strategy of K-Folds Cross Validation and Leave One Out Cross Validation. Then, the models were evaluated through a statistical analysis based on sensitivity, specificity, area under the curve (AUC) and receiving operating characteristic (ROC) curve. The results present significant values obtained by the model with this approach, presenting 67% of AUC with only three features as predictors. It is possible to conclude that this proposed methodology can classify patients with DSPN, obtaining a preliminary computer-aided diagnosis tool for the clinical area in helping to identify the diagnosis of DSPN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...