Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(10): 2951-2964, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38426564

RESUMEN

Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.


Asunto(s)
Raíces de Plantas , Árboles , Xilema , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Árboles/fisiología , Árboles/anatomía & histología , Xilema/fisiología , Xilema/anatomía & histología , Agua/metabolismo , Agua/fisiología , Clima Tropical , China
2.
New Phytol ; 240(3): 1162-1176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37485789

RESUMEN

Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.


Asunto(s)
Magnoliopsida , Madera , Madera/fisiología , Filogenia , Xilema/fisiología , Clima Tropical , Carbohidratos , Agua/fisiología
3.
BMC Res Notes ; 15(1): 251, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840995

RESUMEN

OBJECTIVES: Carbon fixed during photosynthesis is exported from leaves towards sink organs as non-structural carbohydrates (NSC), that are a key energy source for metabolic processes in trees. In xylem, NSC are mostly stored as soluble sugars and starch in radial and axial parenchyma. The multi-functional nature of xylem means that cells possess several functions, including water transport, storage and mechanical support. Little is known about how NSC impacts xylem multi-functionality, nor how NSC vary among species and climates. We collected leaves, stem and root xylem from tree species growing in three climates and estimated NSC in each organ. We also measured xylem traits linked to hydraulic and mechanical functioning. DATA DESCRIPTION: The paper describes functional traits in leaves, stems and roots, including NSC, carbon, nitrogen, specific leaf area, stem and root wood density and xylem traits. Data are provided for up to 90 angiosperm species from temperate, Mediterranean and tropical climates. These data are useful for understanding the trade-offs in resource allocation from a whole-plant perspective, and to better quantify xylem structure and function related to water transportation, mechanical support and storage. Data will also give researchers keys to understanding the ability of trees to adjust to a changing climate.


Asunto(s)
Árboles , Xilema , Carbohidratos , Carbono/metabolismo , Hojas de la Planta/metabolismo , Clima Tropical , Agua , Xilema/metabolismo
4.
Plant Methods ; 13: 11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286541

RESUMEN

BACKGROUND: Belowground processes play an essential role in ecosystem nutrient cycling and the global carbon budget cycle. Quantifying fine root growth is crucial to the understanding of ecosystem structure and function and in predicting how ecosystems respond to climate variability. A better understanding of root system growth is necessary, but choosing the best method of observation is complex, especially in the natural soil environment. Here, we compare five methods of root image acquisition using inexpensive technology that is currently available on the market: flatbed scanner, handheld scanner, manual tracing, a smartphone application scanner and a time-lapse camera. Using the five methods, root elongation rate (RER) was measured for three months, on roots of hybrid walnut (Juglans nigra × Juglans regia L.) in rhizotrons installed in agroforests. RESULTS: When all methods were compared together, there were no significant differences in relative cumulative root length. However, the time-lapse camera and the manual tracing method significantly overestimated the relative mean diameter of roots compared to the three scanning methods. The smartphone scanning application was found to perform best overall when considering image quality and ease of use in the field. The automatic time-lapse camera was useful for measuring RER over several months without any human intervention. CONCLUSION: Our results show that inexpensive scanning and automated methods provide correct measurements of root elongation and length (but not diameter when using the time-lapse camera). These methods are capable of detecting fine roots to a diameter of 0.1 mm and can therefore be selected by the user depending on the data required.

5.
Ann Bot ; 118(4): 621-635, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27390351

RESUMEN

Background Deep roots are a common trait among a wide range of plant species and biomes, and are pivotal to the very existence of ecosystem services such as pedogenesis, groundwater and streamflow regulation, soil carbon sequestration and moisture content in the lower troposphere. Notwithstanding the growing realization of the functional significance of deep roots across disciplines such as soil science, agronomy, hydrology, ecophysiology or climatology, research efforts allocated to the study of deep roots remain incommensurate with those devoted to shallow roots. This is due in part to the fact that, despite technological advances, observing and measuring deep roots remains challenging. Scope Here, other reasons that explain why there are still so many fundamental unresolved questions related to deep roots are discussed. These include the fact that a number of hypotheses and models that are widely considered as verified and sufficiently robust are only partly supported by data. Evidence has accumulated that deep rooting could be a more widespread and important trait among plants than usually considered based on the share of biomass that it represents. Examples that indicate that plant roots have different structures and play different roles with respect to major biochemical cycles depending on their position within the soil profile are also examined and discussed. Conclusions Current knowledge gaps are identified and new lines of research for improving our understanding of the processes that drive deep root growth and functioning are proposed. This ultimately leads to a reflection on an alternative paradigm that could be used in the future as a unifying framework to describe and analyse deep rooting. Despite the many hurdles that pave the way to a practical understanding of deep rooting functions, it is anticipated that, in the relatively near future, increased knowledge about the deep rooting traits of a variety of plants and crops will have direct and tangible influence on how we manage natural and cultivated ecosystems.

6.
Front Plant Sci ; 6: 1022, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26640467

RESUMEN

Fine root dynamics is a main driver of soil carbon stocks, particularly in tropical forests, yet major uncertainties still surround estimates of fine root production and turnover. This lack of knowledge is largely due to the fact that studying root dynamics in situ, particularly deep in the soil, remains highly challenging. We explored the interactions between fine root dynamics, soil depth, and rainfall in mature rubber trees (Hevea brasiliensis Müll. Arg.) exposed to sub-optimal edaphic and climatic conditions. A root observation access well was installed in northern Thailand to monitor root dynamics along a 4.5 m deep soil profile. Image-based measurements of root elongation and lifespan of individual roots were carried out at monthly intervals over 3 years. Soil depth was found to have a significant effect on root turnover. Surprisingly, root turnover increased with soil depth and root half-life was 16, 6-8, and only 4 months at 0.5, 1.0, 2.5, and 3.0 m deep, respectively (with the exception of roots at 4.5 m which had a half-life similar to that found between depths of 1.0 and 2.5 m). Within the first two meters of the soil profile, the highest rates of root emergence occurred about 3 months after the onset of the rainy season, while deeper in the soil, root emergence was not linked to the rainfall pattern. Root emergence was limited during leaf flushing (between March and May), particularly within the first two meters of the profile. Between soil depths of 0.5 and 2.0 m, root mortality appeared independent of variations in root emergence, but below 2.0 m, peaks in root emergence and death were synchronized. Shallow parts of the root system were more responsive to rainfall than their deeper counterparts. Increased root emergence in deep soil toward the onset of the dry season could correspond to a drought acclimation mechanism, with the relative importance of deep water capture increasing once rainfall ceased. The considerable soil depth regularly explored by fine roots, even though significantly less than in surface layers in terms of root length density and biomass, will impact strongly the evaluation of soil carbon stocks.

7.
Front Plant Sci ; 4: 299, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23964281

RESUMEN

The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of "deep roots" is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques.

8.
Tree Physiol ; 31(7): 751-62, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21746745

RESUMEN

Effects of soil and atmospheric drought on whole-tree transpiration (E(T)), leaf water potential (Ψ(L)) and whole-tree hydraulic conductance (K(T)) were investigated in mature rubber trees (Hevea brasiliensis, clone RRIM 600) during the full canopy stage in the rainy season in a drought-prone area of northeast Thailand. Under well-watered soil conditions, transpiration was tightly regulated in response to high evaporative demand, i.e., above reference evapotranspiration (ET(0)) ~2.2 mm day(-1) or maximum vapor pressure deficit ~1.8 kPa. When the trees experienced intermittent soil drought E(T) decreased sharply when relative extractable water in the top soil was < 0.4. The midday leaf water potential (Ψ(md)) on sunny days did not change as a function of soil drought and remained stable at approximately - 1.95 MPa, i.e., displaying isohydric behavior. The decrease in E(T) was mainly due to the change in K(T). K(T) remained constant over a wide range of environmental conditions and decreased sharply at low soil water availability. A simple hydraulic model incorporating critical minimum water potential and the response of whole-tree hydraulic conductance to relative extractable water correctly simulated patterns of transpiration over 6 months. We conclude that an explicit and simplified framework of hydraulic limitation hypothesis was sufficient to describe water use regulation of a mature rubber tree stand in water-limited conditions. Given the complexity of constraints in the soil-plant-atmosphere pathway, our results confirm the relevance of this approach to synthesize the overall behavior of trees under drought.


Asunto(s)
Sequías , Hevea/fisiología , Modelos Biológicos , Transpiración de Plantas , Agua/fisiología , Aire/análisis , Ritmo Circadiano , Cinética , Hojas de la Planta/fisiología , Lluvia , Estaciones del Año , Suelo/análisis , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...