Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36556781

RESUMEN

One of the major obstacles in the way of high-performance quantum dot light-emitting diodes (QLEDs) is the charge imbalance arising from more efficient electron injection into the emission layer than the hole injection. In previous studies, a balanced charge injection was often achieved by lowering the electron injection efficiency; however, high performance next-generation QLEDs require the hole injection efficiency to be enhanced to the level of electron injection efficiency. Here, we introduce a solution-processed HfOx layer for the enhanced hole injection efficiency. A large amount of oxygen vacancies in the HfOx films creates gap states that lower the hole injection barrier between the anode and the emission layer, resulting in enhanced light-emitting characteristics. The insertion of the HfOx layer increased the luminance of the device to 166,600 cd/m2, and the current efficiency and external quantum efficiency to 16.6 cd/A and 3.68%, respectively, compared with the values of 63,673 cd/m2, 7.37 cd/A, and 1.64% for the device without HfOx layer. The enhanced light-emitting characteristics of the device were elucidated by X-ray photoelectron, ultra-violet photoelectron, and UV-visible spectroscopy. Our results suggest that the insertion of the HfOx layer is a useful method for improving the light-emitting properties of QLEDs.

2.
Materials (Basel) ; 15(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407749

RESUMEN

In spite of great application potential as transparent n-type oxides with high electrical mobility at room temperature, threading dislocations (TDs) often found in the (Ba,La)SnO3 (BLSO) films can limit their intrinsic properties so that their role in the physical properties of BLSO films need to be properly understood. The electrical properties and electronic structure of BLSO films grown on SrTiO3 (001) (STO) and BaSnO3 (001) (BSO) substrates are comparatively studied to investigate the effect of the TDs. In the BLSO/STO films with TD density of ~1.32 × 1011 cm-2, n-type carrier density ne and electron mobility are significantly reduced, as compared with the BLSO/BSO films with nearly no TDs. This indicates that TDs play the role of scattering-centers as well as acceptor-centers to reduce n-type carriers. Moreover, in the BLSO/STO films, both binding energies of an Sn 3d core level and a valence band maximum are reduced, being qualitatively consistent with the Fermi level shift with the reduced n-type carriers. However, the reduced binding energies of the Sn 3d core level and the valence band maximum are clearly different as 0.39 and 0.19 eV, respectively, suggesting that the band gap renormalization preexisting in proportion to ne is further suppressed to restore the band gap in the BLSO/STO films with the TDs.

3.
ACS Appl Mater Interfaces ; 10(31): 26456-26464, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30010310

RESUMEN

Modification of multilayer graphene films was investigated for a cathode of organic light-emitting diodes (OLEDs). By doping the graphene/electron transport layer (ETL) interface with Li, the driving voltage of the OLED was reduced dramatically from 24.5 to 3.2 V at a luminance of 1000 cd/m2. The external quantum efficiency was also enhanced from 3.4 to 12.9%. Surface analyses showed that the Li doping significantly lowers the lowest unoccupied molecular orbital level of the ETL, thereby reducing the electron injection barrier and facilitating electron injection from the cathode. Impedance spectroscopy analyses performed on electron-only devices (EODs) revealed the existence of distributed trap states with a well-defined activation energy, which is successfully described by the Havriliak-Negami capacitance functions and the temperature-independent frequency dispersion parameters. In particular, the graphene EOD showed a unique high-frequency feature as compared to the indium tin oxide one, which could be explained by an additional parallel capacitance element.

4.
ACS Appl Mater Interfaces ; 10(19): 16681-16689, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29676150

RESUMEN

For organic solar cells (OSCs) based on nonplanar phthalocyanines, it has previously been reported that a thin film composed of triclinic crystals with face-on (or flat-lying)-oriented molecules, typically obtained with a CuI template layer, is desired for optical absorption in the near-infrared (NIR) spectral region. However, this work demonstrates that for a PbPc-C60 donor-acceptor pair, less face-on orientation with a broader orientation distribution obtained with a new template layer consisting of a ZnPc/CuI bilayer is more desirable in terms of solar cell efficiency than the face-on orientation. A NIR-sensitive PbPc-C60 OSC employing this bilayer-templated PbPc film is found to increase the internal quantum efficiency (IQE) by 36% on average in the NIR spectral region compared to a device using a CuI-templated PbPc film. Analyses of the change in IQE using the exciton diffusion model and the entropy- and disorder-driven charge-separation model suggest that the improved IQE is attributed to the facilitated dissociation of charge-transfer excitons as well as the reduction in exciton quenching near the indium tin oxide surface.

5.
Opt Express ; 22 Suppl 4: A1040-50, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24978067

RESUMEN

Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...