Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(22): 18574-18584, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29799715

RESUMEN

In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC+); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC+; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide linear range from 1.0 to 12.5 mM as well as a good sensitivity (0.66 µA/mM cm2) and a high selectivity to glucose. These films would distinguish between healthy (3.8 and 6.5 mM) and hyperglycemic subjects (>7 mM). Finally, we show that this electro-cross-linking process allows the development of miniaturized biosensors through the functionalization of a single electrode out of a microelectrode array. Elegant and versatile, this electro-cross-linking process can also be used for the development of enzymatic biofuel cells.


Asunto(s)
Técnicas Biosensibles , Electrodos , Enzimas Inmovilizadas , Glucosa , Glucosa Oxidasa
2.
ACS Appl Mater Interfaces ; 9(34): 28117-28138, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28762716

RESUMEN

Macromolecular coatings play an important role in many technological areas, ranging from the car industry to biosensors. Among the different coating technologies, electrochemically triggered processes are extremely powerful because they allow in particular spatial confinement of the film buildup up to the micrometer scale on microelectrodes. Here, we review the latest advances in the field of electrochemically triggered macromolecular film buildup processes performed in aqueous solutions. All these processes will be discussed and related to their several applications such as corrosion prevention, biosensors, antimicrobial coatings, drug-release, barrier properties and cell encapsulation. Special emphasis will be put on applications in the rapidly growing field of biosensors. Using polymers or proteins, the electrochemical buildup of the films can result from a local change of macromolecules solubility, self-assembly of polyelectrolytes through electrostatic/ionic interactions or covalent cross-linking between different macromolecules. The assembly process can be in one step or performed step-by-step based on an electrical trigger affecting directly the interacting macromolecules or generating ionic species.


Asunto(s)
Sustancias Macromoleculares/química , Técnicas Biosensibles , Liberación de Fármacos , Polímeros , Electricidad Estática
3.
J Biomed Mater Res A ; 105(1): 292-300, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27797148

RESUMEN

Designing convenient substrates is a pertinent parameter that can guide stem cell differentiation. Current research is directed toward differentiating mesenchymal stem cells (MSCs) into endothelial cells (ECs). It is generally accepted that MSCs cannot be easily differentiated into ECs without high concentrations of proangiogenic factors. To guide either bone marrow-derived mesenchymal stem cells (BM-MSCs) and Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into ECs-like phenotype, poly(allylamine-hydrochloride)/poly(styrene-sulfonate) multilayers film (PAH/PSS) was used as culture coating and compared to type I collagen (as control coating). After 2 weeks of culture and in absence of angiogenic growth factors, PAH/PSS upregulated KDR, PECAM-1, and CDH5 genes, whereas combining PAH/PSS with endothelial growth media (EGM-2® ) led to the production of respective proteins by WJ-MSCs. In contrast, not fully EC-like phenotype is obtained from the differentiation of BM- or WJ-MSCs cultured on type I collagen. Thus, using PAH/PSS coating in synergy with EGM-2® appears as an ideal condition promoting WJ-MSCs differentiation into ECs-like. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 292-300, 2017.


Asunto(s)
Antígenos de Diferenciación/sangre , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Polielectrolitos , Regulación hacia Arriba/efectos de los fármacos , Técnicas de Cultivo de Célula , Células Endoteliales/citología , Humanos , Células Madre Mesenquimatosas/citología , Polielectrolitos/química , Polielectrolitos/farmacología
4.
Langmuir ; 31(49): 13385-93, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26575431

RESUMEN

Inspired by the strong chemical adhesion mechanism of mussels, we designed a catechol-based electrochemically triggered self-assembly of films based on ethylene glycol molecules bearing catechol groups on both sides and denoted as bis-catechol molecules. These molecules play the role of morphogens and, in contrast to previously investigated systems, they are also one of the constituents, after reaction, of the film. Unable to interact together, commercially available poly(allylamine hydrochloride) (PAH) chains and bis-catechol molecules are mixed in an aqueous solution and brought in contact with an electrode. By application of defined potential cycles, bis-catechol molecules undergo oxidation leading to molecules bearing "reactive" quinone groups which diffuse toward the solution. In this active state, the quinones react with amino groups of PAH through Michael addition and Schiff's base condensation reaction. The application of cyclic voltammetry (CV) between 0 and 500 mV (vs Ag/AgCl, scan rate of 50 mV/s) of a PAH/bis-catechol solution results in a fast self-construction of a film that reaches a thickness of 40 nm after 60 min. The films present a spiky structure which is attributed to the use of bis-functionalized molecules as one component of the films. XPS measurements show the presence of both PAH and bis-catechol cross-linked together in a covalent way. We show that the amine/catechol ratio is an important parameter which governs the film buildup. For a given amine/catechol ratio, it does exist an optimum CV scan rate leading to a maximum of the film thickness as a function of the scan rate.


Asunto(s)
Biomimética/métodos , Bivalvos/química , Poliaminas/química , Adhesividad , Animales , Catecoles/química , Electroquímica , Glicol de Etileno/química
5.
Langmuir ; 31(37): 10208-14, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26322650

RESUMEN

The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.


Asunto(s)
Electroquímica/métodos , Alilamina/química , Técnicas Biosensibles/métodos , Catálisis , Electrodos , Poliaminas/química , Polielectrolitos , Polímeros/química , Poliestirenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...