Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Acta Psychol (Amst) ; 246: 104291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703656

RESUMEN

Previous literature showed a complex interpretation of recall tasks due to the complex relationship between Executive Functions (EF) and Long Term Memory (M). The Test of Memory Strategies (TMS) could be useful for assessing this issue, because it evaluates EF and M simultaneously. This study aims to explore the validity of the TMS structure, comparing the models proposed by Vaccaro et al. (2022) and evaluating the measurement invariance according to three countries (Italy, Spain, and Portugal) through Confirmatory Factor Analysis (CFA). Four hundred thirty-one healthy subjects (Age mean = 54.84, sd = 20.43; Education mean = 8.85, sd =4.05; M = 177, F = 259) were recruited in three countries (Italy, Spain, and Portugal). Measurement invariance across three country groups was evaluated through Structural Equation modeling. Also, convergent and divergent validity were examined through the correlation between TMS and classical neuropsychological tests. CFA outcomes suggested that the best model was the three-dimensional model, in which list 1 and list2 reflect EF, list 3 reflects a mixed factor of EF and M (EFM) and list4 and list5 reflect M. This result is in line with the theory that TMS decreases EF components progressively. TMS was metric invariant to the country, but scalar invariance was not tenable. Finally, the factor scores of TMS showed convergent validity with the classical neuropsychological tests. The overall results support cross-validation of TMS in the three countries considered.


Asunto(s)
Función Ejecutiva , Humanos , Masculino , Femenino , Italia , Portugal , Adulto , Persona de Mediana Edad , España , Función Ejecutiva/fisiología , Anciano , Pruebas Neuropsicológicas/normas , Pruebas Neuropsicológicas/estadística & datos numéricos , Análisis Factorial , Memoria a Largo Plazo/fisiología , Reproducibilidad de los Resultados , Psicometría/normas , Psicometría/instrumentación , Psicometría/métodos , Recuerdo Mental/fisiología , Comparación Transcultural
2.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798609

RESUMEN

Objective: This study sought to identify magnetoencephalography (MEG) power spectra patterns associated with cerebrovascular damage (white matter hyperintensities - WMH) and their relationship with cognitive performance and brain structure integrity in aging individuals without cognitive impairment. Methods: We hypothesized a "slowness" pattern characterized by increased power in δ and θ bands and decreased power in the ß band associated with the severity of vascular damage. MEG signals were analyzed in cognitively healthy older adults to investigate these associations. Results: Contrary to expectations, we did not observe an increase in δ and θ power. However, we found a significant negative correlation between ß band power and WMH volume. This ß power reduction was linked to structural brain changes, such as larger lateral ventricles, reduced white matter volume, and decreased fractional anisotropy in critical white matter tracts, but not to cognitive performance. This suggests that ß band power reduction may serve as an early marker of vascular damage before the onset of cognitive symptoms. Conclusion: Our findings partially confirm our initial hypothesis by demonstrating a decrease in ß band power with increased vascular damage but not the anticipated increase in slow band power. The lack of correlation between the ßpow marker and cognitive performance suggests its potential utility in early identification of at-risk individuals for future cognitive impairment due to vascular origins. These results contribute to understanding the electrophysiological signatures of preclinical vascular damage and highlight the importance of MEG in detecting subtle brain changes associated with aging.

3.
medRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798616

RESUMEN

Cerebrovascular damage from small vessel disease (SVD) occurs in healthy and pathological aging. SVD markers, such as white matter hyperintensities (WMH), are commonly found in individuals over 60 and increase in prevalence with age. WMHs are detectable on standard MRI by adhering to the STRIVE criteria. Currently, visual assessment scales are used in clinical and research scenarios but is time-consuming and has rater variability, limiting its practicality. Addressing this issue, our study aimed to determine the most precise WMH segmentation software, offering insights into methodology and usability to balance clinical precision with practical application. This study employed a dataset comprising T1, FLAIR, and DWI images from 300 cognitively healthy older adults. WMHs in this cohort were evaluated using four automated neuroimaging tools: Lesion Prediction Algorithm (LPA) and Lesion Growth Algorithm (LGA) from Lesion Segmentation Tool (LST), Sequence Adaptive Multimodal Segmentation (SAMSEG), and Brain Intensity Abnormalities Classification Algorithm (BIANCA). Additionally, clinicians manually segmented WMHs in a subsample of 45 participants to establish a gold standard. The study assessed correlations with the Fazekas scale, algorithm performance, and the influence of WMH volume on reliability. Results indicated that supervised algorithms were superior, particularly in detecting small WMHs, and can improve their consistency when used in parallel with unsupervised tools. The research also proposed a biomarker for moderate vascular damage, derived from the top 95th percentile of WMH volume in healthy individuals aged 50 to 60. This biomarker effectively differentiated subgroups within the cohort, correlating with variations in brain structure and behavior.

4.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565295

RESUMEN

The accumulation of amyloid-ß (Aß) and hyperphosphorylated-tau (hp-tau) are two classical histopathological biomarkers in Alzheimer's disease (AD). However, their detailed interactions with the electrophysiological changes at the meso- and macroscale are not yet fully understood. We developed a mechanistic multiscale model of AD progression, linking proteinopathy to its effects on neural activity and vice-versa. We integrated a heterodimer model of prion-like protein propagation and a brain network model of Jansen-Rit neural masses derived from human neuroimaging data whose parameters varied due to neurotoxicity. Results showed that changes in inhibition guided the electrophysiological alterations found in AD, and these changes were mainly attributed to Aß effects. Additionally, we found a causal disconnection between cellular hyperactivity and interregional hypersynchrony contrary to previous beliefs. Finally, we demonstrated that early Aß and hp-tau depositions' location determine the spatiotemporal profile of the proteinopathy. The presented model combines the molecular effects of both Aß and hp-tau together with a mechanistic protein propagation model and network effects within a closed-loop model. This holds the potential to enlighten the interplay between AD mechanisms on various scales, aiming to develop and test novel hypotheses on the contribution of different AD-related variables to the disease evolution.


Asunto(s)
Enfermedad de Alzheimer , Deficiencias en la Proteostasis , Humanos , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuroimagen/métodos , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Progresión de la Enfermedad
5.
Geroscience ; 46(3): 2989-3003, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38172488

RESUMEN

First-degree relatives of Alzheimer's disease patients constitute a key population in the search for early markers. Our group identified functional connectivity differences between cognitively unimpaired individuals with and without a family history. In this unprecedented follow-up study, we examine whether family history is associated with a longitudinal increase in the functional connectivity of those regions. Moreover, this is the first work to correlate electrophysiological measures with plasma p-tau231 levels, a known pathology marker, to interpret the nature of the change. We evaluated 69 cognitively unimpaired individuals with a family history of Alzheimer's disease and 28 without, at two different time points, approximately 3 years apart, including resting state magnetoencephalography recordings and plasma p-tau231 determinations. Functional connectivity changes in both precunei and left anterior cingulate cortex in the high-alpha band were studied using non-parametric cluster-based permutation tests. Connectivity values were correlated with p-tau231 levels. Three clusters emerged in individuals with family history, exhibiting a longitudinal increase of connectivity. Notably, the clusters for both precunei bore a striking resemblance to those found in previous cross-sectional studies. The connectivity values at follow-up and the change in connectivity in the left precuneus cluster showed significant positive correlations with p-tau231. This study consolidates the use of electrophysiology, in combination with plasma biomarkers, to monitor healthy individuals at risk of Alzheimer's disease and emphasizes the value of combining noninvasive markers to understand the underlying mechanisms and track disease progression. This could facilitate the design of more effective intervention strategies and accurate progression assessment tools.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Estudios de Seguimiento , Imagen por Resonancia Magnética
6.
Geroscience ; 46(2): 2619-2640, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105400

RESUMEN

Mild cognitive impairment (MCI) has been frequently interpreted as a transitional phase between healthy cognitive aging and dementia, particularly of the Alzheimer's disease (AD) type. Of note, few studies explored that transition from a multifactorial perspective, taking into consideration the effect of basic factors such as biological sex. In the present study 96 subjects with MCI (37 males and 59 females) were followed-up and divided into two subgroups according to their clinical outcome: "progressive" MCI (pMCI = 41), if they fulfilled the diagnostic criteria for AD at the end of follow-up; and "stable" MCI (sMCI = 55), if they remained with the initial diagnosis. Different markers were combined to characterize sex differences between groups, including magnetoencephalography recordings, cognitive performance, and brain volumes derived from magnetic resonance imaging. Results indicated that the pMCI group exhibited higher low-frequency activity, lower scores in neuropsychological tests and reduced brain volumes than the sMCI group, being these measures significantly correlated. When sex was considered, results revealed that this pattern was mainly due to the influence of the females' sample. Overall, females exhibited lower cognitive scores and reduced brain volumes. More interestingly, females in the pMCI group showed an increased theta activity that correlated with a more abrupt reduction of cognitive and volumetric scores as compared with females in the sMCI group and with males in the pMCI group. These findings suggest that females' brains might be more vulnerable to the effects of AD pathology, since regardless of age, they showed signs of more pronounced deterioration than males.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Caracteres Sexuales , Progresión de la Enfermedad , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
8.
Biomedicines ; 11(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38137368

RESUMEN

BACKGROUND: This study aimed to explore the association between a verbal learning task that evaluates the potential mutual dependency between memory and executive functions (i.e., the Test of Memory Strategies, TMS) and cerebrospinal fluid (CSF) Alzheimer's Disease (AD) biomarkers. METHODS: A sample of 47 mild cognitive impairment (MCI) participants from Poland and Spain were classified according to the Erlangen Score Diagnostic Algorithm (ESA) into CSF- (n = 16) and CSF+ (n = 31) groups. Correlation analyses between TMS word-list conditions and CSF biomarkers were conducted. Additionally, an analysis of covariance was performed to define the effect on ESA classification in the sample, using as a covariable the country of origin of the participants. RESULTS: Significant associations between the TMS-3 condition and Aß42, t-tau, and p-tau were observed for the whole sample. In addition, the CSF- participants obtained higher cognitive performance in TMS-3 compared to the CSF+ group. This outcome persisted if the groups were based on Aß42 scores, but not t-tau or p-tau values. CONCLUSIONS: These findings could indicate that poor performance on verbal learning tests may be affected by executive dysfunctions. Therefore, future intervention plans focused on training executive functions would be of interest to improve the ability of MCI patients to encode and organize information.

9.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37961615

RESUMEN

An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.

10.
Front Neurosci ; 17: 1223950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655010

RESUMEN

The alpha rhythm is often associated with relaxed wakefulness or idling and is altered by various factors. Abnormalities in the alpha rhythm have been linked to several neurological and psychiatric disorders, including Alzheimer's disease. Transcranial alternating current stimulation (tACS) has been proposed as a potential tool to restore a disrupted alpha rhythm in the brain by stimulating at the individual alpha frequency (IAF), although some research has produced contradictory results. In this study, we applied an IAF-tACS protocol over parieto-occipital areas to a sample of healthy subjects and measured its effects over the power spectra. Additionally, we used computational models to get a deeper understanding of the results observed in the experiment. Both experimental and numerical results showed an increase in alpha power of 8.02% with respect to the sham condition in a widespread set of regions in the cortex, excluding some expected parietal regions. This result could be partially explained by taking into account the orientation of the electric field with respect to the columnar structures of the cortex, showing that the gyrification in parietal regions could generate effects in opposite directions (hyper-/depolarization) at the same time in specific brain regions. Additionally, we used a network model of spiking neuronal populations to explore the effects that these opposite polarities could have on neural activity, and we found that the best predictor of alpha power was the average of the normal components of the electric field. To sum up, our study sheds light on the mechanisms underlying tACS brain activity modulation, using both empirical and computational approaches. Non-invasive brain stimulation techniques hold promise for treating brain disorders, but further research is needed to fully understand and control their effects on brain dynamics and cognition. Our findings contribute to this growing body of research and provide a foundation for future studies aimed at optimizing the use of non-invasive brain stimulation in clinical settings.

11.
PLoS Comput Biol ; 19(8): e1011007, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535694

RESUMEN

The thalamus is a central brain structure that serves as a relay station for sensory inputs from the periphery to the cortex and regulates cortical arousal. Traditionally, it has been regarded as a passive relay that transmits information between brain regions. However, recent studies have suggested that the thalamus may also play a role in shaping functional connectivity (FC) in a task-based context. Based on this idea, we hypothesized that due to its centrality in the network and its involvement in cortical activation, the thalamus may also contribute to resting-state FC, a key neurological biomarker widely used to characterize brain function in health and disease. To investigate this hypothesis, we constructed ten in-silico brain network models based on neuroimaging data (MEG, MRI, and dwMRI), and simulated them including and excluding the thalamus, and raising the noise into thalamus to represent the afferences related to the reticular activating system (RAS) and the relay of peripheral sensory inputs. We simulated brain activity and compared the resulting FC to their empirical MEG counterparts to evaluate model's performance. Results showed that a parceled version of the thalamus with higher noise, able to drive damped cortical oscillators, enhanced the match to empirical FC. However, with an already active self-oscillatory cortex, no impact on the dynamics was observed when introducing the thalamus. We also demonstrated that the enhanced performance was not related to the structural connectivity of the thalamus, but to its higher noisy inputs. Additionally, we highlighted the relevance of a balanced signal-to-noise ratio in thalamus to allow it to propagate its own dynamics. In conclusion, our study sheds light on the role of the thalamus in shaping brain dynamics and FC in resting-state and allowed us to discuss the general role of criticality in the brain at the mesoscale level.


Asunto(s)
Encéfalo , Tálamo , Encéfalo/fisiología , Tálamo/diagnóstico por imagen , Tálamo/fisiología , Imagen por Resonancia Magnética/métodos , Tronco Encefálico , Mapeo Encefálico/métodos , Vías Nerviosas/fisiología
12.
Biomedicines ; 11(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509663

RESUMEN

This study aimed to analyze the evolution of visual changes in cognitively healthy individuals at risk for Alzheimer's disease (AD). Participants with a first-degree family history of AD (FH+) and carrying the Ε4+ allele for the ApoE gene (ApoE ε4+) underwent retinal thickness analysis using optical coherence tomography (OCT) and visual function assessments, including visual acuity (VA), contrast sensitivity (CS), color perception, perception digital tests, and visual field analysis. Structural analysis divided participants into FH+ ApoE ε4+ and FH- ApoE ε4- groups, while functional analysis further categorized them by age (40-60 years and over 60 years). Over the 27-month follow-up, the FH+ ApoE ε4+ group exhibited thickness changes in all inner retinal layers. Comparing this group to the FH- ApoE ε4- group at 27 months revealed progressing changes in the inner nuclear layer. In the FH+ ApoE ε4+ 40-60 years group, no progression of visual function changes was observed, but an increase in VA and CS was maintained at 3 and 12 cycles per degree, respectively, compared to the group without AD risk at 27 months. In conclusion, cognitively healthy individuals at risk for AD demonstrated progressive retinal structural changes over the 27-month follow-up, while functional changes remained stable.

13.
Front Psychol ; 14: 1124830, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484098

RESUMEN

Introduction: Alzheimer's disease (AD) is the most common form of dementia affecting the central nervous system, and alteration of several visual structures has been reported. Structural retinal changes are usually accompanied by changes in visual function in this disease. The aim of this study was to analyse the differences in visual function at different stages of the pathology (family history group (FH+), mild cognitive impairment (MCI), mild AD and moderate AD) in comparison with a control group of subjects with no cognitive decline and no family history of AD. Methods: We included 53 controls, 13 subjects with FH+, 23 patients with MCI, 25 patients with mild AD and, 21 patients with moderate AD. All were ophthalmologically healthy. Visual acuity (VA), contrast sensitivity (CS), colour perception, visual integration, and fundus examination were performed. Results: The analysis showed a statistically significant decrease in VA, CS and visual integration score between the MCI, mild AD and moderate AD groups compared to the control group. In the CS higher frequencies and in the colour perception test (total errors number), statistically significant differences were also observed in the MCI, mild AD and moderate AD groups with respect to the FH+ group and also between the control and AD groups. The FH+ group showed no statistically significant difference in visual functions compared to the control group. All the test correlated with the Mini Mental State Examination score and showed good predictive value when memory decline was present, with better values when AD was at a more advanced stage. Conclusion: Alterations in visual function appear in subjects with MCI and evolve when AD is established, being stable in the initial stages of the disease (mild AD and moderate AD). Therefore, visual psychophysical tests are a useful, simple and complementary tool to neuropsychological tests to facilitate diagnosis in the preclinical and early stages of AD.

14.
Cortex ; 166: 365-376, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499565

RESUMEN

Complex human reasoning involves minimal abilities to extract conclusions implied in the available information. These abilities are considered "deductive" because they exemplify certain abstract relations among propositions or probabilities called deductive arguments. However, the electrophysiological dynamics which supports such complex cognitive processes has not been addressed yet. In this work we consider typically deductive logico-probabilistically valid inferences and aim to verify or refute their electrophysiological functional connectivity differences from invalid inferences with the same content (same relational variables, same stimuli, same relevant and salient features). We recorded the brain electrophysiological activity of 20 participants (age = 20.35 ± 3.23) by means of an MEG system during two consecutive reasoning tasks: a search task (invalid condition) without any specific deductive rules to follow, and a logically valid deductive task (valid condition) with explicit deductive rules as instructions. We calculated the functional connectivity (FC) for each condition and conducted a seed-based analysis in a set of cortical regions of interest. Finally, we used a cluster-based permutation test to compare the differences between logically valid and invalid conditions in terms of FC. As a first novel result we found higher FC for valid condition in beta band between regions of interest and left prefrontal, temporal, parietal, and cingulate structures. FC analysis allows a second novel result which is the definition of a propositional network with operculo-cingular, parietal and medial nodes, specifically including disputed medial deductive "core" areas. The experiment discloses measurable cortical processes which do not depend on content but on truth-functional propositional operators. These experimental novelties may contribute to understand the cortical bases of deductive processes.


Asunto(s)
Solución de Problemas , Adolescente , Humanos , Adulto Joven , Solución de Problemas/fisiología , Fenómenos Electrofisiológicos , Corteza Cerebral
15.
Brain Commun ; 5(3): fcad168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274829

RESUMEN

Epilepsy surgery continues to be a recommended treatment for intractable (medication-resistant) epilepsy; however, 30-70% of epilepsy surgery patients can continue to have seizures. Surgical failures are often associated with incomplete resection or inaccurate localization of the epileptogenic zone. This retrospective study aims to improve surgical outcome through in silico testing of surgical hypotheses through a personalized computational neurosurgery model created from individualized patient's magnetoencephalography recording and MRI. The framework assesses the extent of the epileptic network and evaluates underlying spike dynamics, resulting in identification of one single brain volume as a candidate for resection. Dynamic-locked networks were utilized for virtual cortical resection. This in silico protocol was tested in a cohort of 24 paediatric patients with focal drug-resistant epilepsy who underwent epilepsy surgery. Of 24 patients who were included in the analysis, 79% (19 of 24) of the models agreed with the patient's clinical surgery outcome and 21% (5 of 24) were considered as model failures (accuracy 0.79, sensitivity 0.77, specificity 0.82). Patients with unsuccessful surgery outcome typically showed a model cluster outside of the resected cavity, while those with successful surgery showed the cluster model within the cavity. Two of the model failures showed the cluster in the vicinity of the resected tissue and either a functional disconnection or lack of precision of the magnetoencephalography-MRI overlapping could explain the results. Two other cases were seizure free for 1 year but developed late recurrence. This is the first study that provides in silico personalized protocol for epilepsy surgery planning using magnetoencephalography spike network analysis. This model could provide complementary information to the traditional pre-surgical assessment methods and increase the proportion of patients achieving seizure-free outcome from surgery.

16.
Sci Rep ; 13(1): 9489, 2023 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-37303002

RESUMEN

Electroencephalography (EEG) can detect changes in cerebral activity during spaceflight. This study evaluates the effect of spaceflight on brain networks through analysis of the Default Mode Network (DMN)'s alpha frequency band power and functional connectivity (FC), and the persistence of these changes. Five astronauts' resting state EEGs under three conditions were analyzed (pre-flight, in-flight, and post-flight). DMN's alpha band power and FC were computed using eLORETA and phase-locking value. Eyes-opened (EO) and eyes-closed (EC) conditions were differentiated. We found a DMN alpha band power reduction during in-flight (EC: p < 0.001; EO: p < 0.05) and post-flight (EC: p < 0.001; EO: p < 0.01) when compared to pre-flight condition. FC strength decreased during in-flight (EC: p < 0.01; EO: p < 0.01) and post-flight (EC: ns; EO: p < 0.01) compared to pre-flight condition. The DMN alpha band power and FC strength reduction persisted until 20 days after landing. Spaceflight caused electrocerebral alterations that persisted after return to earth. Periodic assessment by EEG-derived DMN analysis has the potential to become a neurophysiologic marker of cerebral functional integrity during exploration missions to space.


Asunto(s)
Vuelo Espacial , Humanos , Astronautas , Ojo , Encéfalo , Electroencefalografía
17.
Neurol Sci ; 44(11): 3895-3903, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37354323

RESUMEN

BACKGROUND: Previous literature has shown that executive functions (EF) are related to performance in memory (M) tasks. The Test of Memory strategies (TMS) is a psychometric test that examines EF and M simultaneously and it was recently validated on an Italian healthy cohort. The first aim of the study was to apply TMS, for the first time, on a sample of patients with Parkinson's disease (PD), who are characterized by mild cognitive impairment. The second aim is to investigate whether TMS scores can discriminate PD patients from healthy controls. METHOD: Ninety-eight subjects were enrolled, including 68 patients with PD, and 30 Italian healthy controls (HC), who also underwent a memory evaluation through well-known tests. RESULTS: Confirmatory factor analysis (CFA) demonstrated that TMS of PD patients had a bi-dimensional structure as previously found in healthy cohort. In detail, The TMS-1 and TMS-2 lists require greater involvement of the EF factor, while TMS-3, TMS-4 and TMS-5 the M factor. Receiver operating characteristic (ROC) curves and precision-recall (PR) curves showed that the M subscale can distinguish between HC and PD, while EF had poor discrimination power. CONCLUSION: The hypothesized prediction model of TMS test seems to have adequate ability to discriminate PD from HC especially for the M function.

18.
Front Hum Neurosci ; 17: 1068216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875239

RESUMEN

Cerebrovascular disease is responsible for up to 20% of cases of dementia worldwide, but also it is a major comorbid contributor to the progression of other neurodegenerative diseases, like Alzheimer's disease. White matter hyperintensities (WMH) are the most prevalent imaging marker in cerebrovascular disease. The presence and progression of WMH in the brain have been associated with general cognitive impairment and the risk to develop all types of dementia. The aim of this piece of work is the assessment of brain functional differences in an MCI population based on the WMH volume. One-hundred and twenty-nine individuals with mild cognitive impairment (MCI) underwent a neuropsychological evaluation, MRI assessment (T1 and Flair), and MEG recordings (5 min of eyes closed resting state). Those participants were further classified into vascular MCI (vMCI; n = 61, mean age 75 ± 4 years, 35 females) or non-vascular MCI (nvMCI; n = 56, mean age 72 ± 5 years, 36 females) according to their WMH total volume, assessed with an automatic detection toolbox, LST (SPM12). We used a completely data-driven approach to evaluate the differences in the power spectra between the groups. Interestingly, three clusters emerged: One cluster with widespread larger theta power and two clusters located in both temporal regions with smaller beta power for vMCI compared to nvMCI. Those power signatures were also associated with cognitive performance and hippocampal volume. Early identification and classification of dementia pathogenesis is a crucially important goal for the search for more effective management approaches. These findings could help to understand and try to palliate the contribution of WMH to particular symptoms in mixed dementia progress.

19.
Clin Neurophysiol ; 150: 1-16, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972647

RESUMEN

OBJECTIVE: Using EEG to characterise functional brain networks through graph theory has gained significant interest in clinical and basic research. However, the minimal requirements for reliable measures remain largely unaddressed. Here, we examined functional connectivity estimates and graph theory metrics obtained from EEG with varying electrode densities. METHODS: EEG was recorded with 128 electrodes in 33 participants. The high-density EEG data were subsequently subsampled into three sparser montages (64, 32, and 19 electrodes). Four inverse solutions, four measures of functional connectivity, and five graph theory metrics were tested. RESULTS: The correlation between the results obtained with 128-electrode and the subsampled montages decreased as a function of the number of electrodes. As a result of decreased electrode density, the network metrics became skewed: mean network strength and clustering coefficient were overestimated, while characteristic path length was underestimated. CONCLUSIONS: Several graph theory metrics were altered when electrode density was reduced. Our results suggest that, for optimal balance between resource demand and result precision, a minimum of 64 electrodes should be utilised when graph theory metrics are used to characterise functional brain networks in source-reconstructed EEG data. SIGNIFICANCE: Characterisation of functional brain networks derived from low-density EEG warrants careful consideration.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Electroencefalografía/métodos , Mapeo Encefálico/métodos , Cabeza , Electrodos , Red Nerviosa
20.
Front Psychol ; 14: 1069990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818101

RESUMEN

Introduction: Heavy drinking (HD) prevalent pattern of alcohol consumption among adolescents, particularly concerning because of their critical vulnerability to the neurotoxic effects of ethanol. Adolescent neurodevelopment is characterized by critical neurobiological changes of the prefrontal, temporal and parietal regions, important for the development of executive control processes, such as inhibitory control (IC). In the present Magnetoencephalography (MEG) study, we aimed to describe the relationship between electrophysiological Functional Connectivity (FC) during an IC task and HD development, as well as its impact on functional neuromaturation. Methods: We performed a two-year longitudinal protocol with two stages. In the first stage, before the onset of HD, we recorded brain electrophysiological activity from a sample of 67 adolescents (mean age = 14.6 ± 0.7) during an IC task. Alcohol consumption was measured using the AUDIT test and a semi-structured interview. Two years later, in the second stage, 32 of the 67 participants (mean age 16.7 ± 0.7) completed a similar protocol. As for the analysis in the first stage, the source-space FC matrix was calculated, and then, using a cluster-based permutation test (CBPT) based on Spearman's correlation, we calculated the correlation between the FC of each cortical source and the number of standard alcohol units consumed two years later. For the analysis of longitudinal change, we followed a similar approach. We calculated the symmetrized percentage change (SPC) between FC at both stages and performed a CBPT analysis, analyzing the correlation between FC change and the level of alcohol consumed in a regular session. Results: The results revealed an association between higher beta-band FC in the prefrontal and temporal regions and higher consumption years later. Longitudinal results showed that greater future alcohol consumption was associated with an exacerbated reduction in the FC of the same areas. Discussion: These results underline the existence of several brain functional differences prior to alcohol misuse and their impact on functional neuromaturation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...