Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35694956

RESUMEN

Chromosome segregation requires that centromeres properly attach to spindle microtubules. This essential step regulates the accuracy of cell division and must therefore be precisely regulated. One of the main centromeric regulatory signaling pathways is the haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. During mitosis, the haspin kinase phosphorylates histone H3 at threonine 3 (H3T3ph), an essential epigenetic mark that recruits the CPC, in which the catalytic component is Aurora B kinase (AURKB). However, the centromeric haspin-H3T3ph-CPC pathway remains largely uncharacterized in mammalian male meiosis. We have analyzed haspin functions by either its chemical inhibition with LDN-192960 in cultured spermatocytes, or the ablation of the Haspin gene in Haspin-/- mice. Our studies suggest that haspin kinase activity is required for proper chromosome congression both during meiotic divisions and for the recruitment of Aurora B and kinesin MCAK (also known as KIF2C) to meiotic centromeres. However, the absence of H3T3ph histone mark does not alter borealin (or CDCA8) and SGO2 centromeric localization. These results add new and relevant information regarding the regulation of the haspin-H3T3ph-CPC pathway and centromere function during meiosis.


Asunto(s)
Aurora Quinasa B , Segregación Cromosómica , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinesinas/genética , Masculino , Mamíferos/metabolismo , Meiosis/genética , Ratones , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Treonina/metabolismo
2.
Sci Rep ; 5: 18180, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26658992

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Cadherinas/metabolismo , Ciclina D1/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Neuronas/metabolismo , Proteína de Retinoblastoma/metabolismo , Fase S , Transducción de Señal , Proteína de la Poliposis Adenomatosa del Colon/antagonistas & inhibidores , Animales , Antígenos CD , Caspasa 3/metabolismo , Ciclo Celular , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ácido Glutámico , Mitosis , Fosforilación , Estabilidad Proteica , Ratas
3.
Nat Cell Biol ; 17(10): 1304-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322680

RESUMEN

Blocking mitotic progression has been proposed as an attractive therapeutic strategy to impair proliferation of tumour cells. However, how cells survive during prolonged mitotic arrest is not well understood. We show here that survival during mitotic arrest is affected by the special energetic requirements of mitotic cells. Prolonged mitotic arrest results in mitophagy-dependent loss of mitochondria, accompanied by reduced ATP levels and the activation of AMPK. Oxidative respiration is replaced by glycolysis owing to AMPK-dependent phosphorylation of PFKFB3 and increased production of this protein as a consequence of mitotic-specific translational activation of its mRNA. Induction of autophagy or inhibition of AMPK or PFKFB3 results in enhanced cell death in mitosis and improves the anti-tumoral efficiency of microtubule poisons in breast cancer cells. Thus, survival of mitotic-arrested cells is limited by their metabolic requirements, a feature with potential implications in cancer therapies aimed to impair mitosis or metabolism in tumour cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Fibroblastos/metabolismo , Glucólisis , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Fosfofructoquinasa-2/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/fisiología , Autofagia/genética , Western Blotting , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/ultraestructura , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Células MCF-7 , Ratones Noqueados , Ratones Desnudos , Microscopía Confocal , Paclitaxel/farmacología , Fosfofructoquinasa-2/genética , Interferencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Neurosci ; 35(25): 9287-301, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26109654

RESUMEN

The survival of postmitotic neurons needs continuous degradation of cyclin B1, a mitotic protein accumulated aberrantly in the damaged brain areas of Alzheimer's disease and stroked patients. Degradation of cyclin B1 takes place in the proteasome after ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C)-cadherin 1 (Cdh1), an E3 ubiquitin ligase that is highly active in neurons. However, during excitotoxic damage-a hallmark of neurological disorders-APC/C-Cdh1 is inactivated, causing cyclin B1 stabilization and neuronal death through an unknown mechanism. Here, we show that an excitotoxic stimulus in rat cortical neurons in primary culture promotes cyclin B1 accumulation in the mitochondria, in which it binds to, and activates, cyclin-dependent kinase-1 (Cdk1). The cyclin B1-Cdk1 complex in the mitochondria phosphorylates the anti-apoptotic protein B-cell lymphoma extra-large (Bcl-xL), leading to its dissociation from the ß subunit of F1Fo-ATP synthase. The subsequent inhibition of ATP synthase activity causes complex I oxidative damage, mitochondrial inner membrane depolarization, and apoptotic neuronal death. These results unveil a previously unrecognized role for mitochondrial cyclin B1 in the oxidative damage associated with neurological disorders.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Apoptosis/fisiología , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Neuronas/metabolismo , Proteína bcl-X/metabolismo , Animales , Western Blotting , Proteína Quinasa CDC2 , Supervivencia Celular , Células Cultivadas , Citometría de Flujo , Inmunohistoquímica , Inmunoprecipitación , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Degeneración Nerviosa/metabolismo , Estrés Oxidativo/fisiología , Unión Proteica , ARN Interferente Pequeño , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
5.
Nat Commun ; 4: 2879, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24301314

RESUMEN

The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1--which regulates mitosis exit and G1-phase length in dividing cells--regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdh1/metabolismo , Corteza Cerebral/embriología , Neurogénesis , Neuronas/citología , Ciclosoma-Complejo Promotor de la Anafase/genética , Animales , Apoptosis , Proteínas Cdh1/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Neuronas/enzimología , Neuronas/metabolismo , Tamaño de los Órganos
6.
Nat Cell Biol ; 11(6): 747-52, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19448625

RESUMEN

Neurons are known to have a lower glycolytic rate than astrocytes and when stressed they are unable to upregulate glycolysis because of low Pfkfb3 (6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3) activity. This enzyme generates fructose-2,6-bisphosphate (F2,6P(2)), the most potent activator of 6-phosphofructo-1-kinase (Pfk1; ref. 4), a master regulator of glycolysis. Here, we show that Pfkfb3 is absent from neurons in the brain cortex and that Pfkfb3 in neurons is constantly subject to proteasomal degradation by the action of the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1. By contrast, astrocytes have low APC/C-Cdh1 activity and therefore Pfkfb3 is present in these cells. Upregulation of Pfkfb3 by either inhibition of Cdh1 or overexpression of Pfkfb3 in neurons resulted in the activation of glycolysis. This, however, was accompanied by a marked decrease in the oxidation of glucose through the pentose phosphate pathway (a metabolic route involved in the regeneration of reduced glutathione) resulting in oxidative stress and apoptotic death. Thus, by actively downregulating glycolysis by APC/C-Cdh1, neurons use glucose to maintain their antioxidant status at the expense of its utilization for bioenergetic purposes.


Asunto(s)
Antioxidantes/metabolismo , Metabolismo Energético , Glucólisis/fisiología , Neuronas/metabolismo , Fosfofructoquinasa-2/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Corteza Cerebral/citología , Glucosa/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neuronas/citología , Óxido Nítrico/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Fosfofructoquinasa-2/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia
7.
EMBO J ; 27(20): 2736-45, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18818692

RESUMEN

Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that destabilizes cell cycle proteins, is activated by Cdh1 in post-mitotic neurons, where it regulates axonal growth, synaptic plasticity and survival. The APC/C-Cdh1 substrate, cyclin B1, has been found to accumulate in degenerating brain areas in Alzheimer's disease and stroke. This highlights the importance of elucidating cyclin B1 regulation by APC/C-Cdh1 in neurons under stress conditions relevant to neurological disease. Here, we report that stimulation of N-methyl-D-aspartate receptors (NMDARs) that occurs in neurodegenerative diseases promoted the accumulation of cyclin B1 in the nuclei of cortical neurons; this led the neurons to undergo apoptotic death. Moreover, we found that the Ser-40, Thr-121 and Ser-163 triple phosphorylation of Cdh1 by the cyclin-dependent kinase-5 (Cdk5)-p25 complex was necessary and sufficient for cyclin B1 stabilization and apoptotic death after NMDAR stimulation. These results reveal Cdh1 as a novel Cdk5 substrate that mediates cyclin B1 neuronal accumulation in excitotoxicity.


Asunto(s)
Cadherinas/metabolismo , Ciclina B/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Animales , Apoptosis , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina B1 , Modelos Biológicos , Neuronas/metabolismo , Fosforilación , Plásmidos/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...