Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 17, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191395

RESUMEN

BACKGROUND: The mare-foal relationship is essential for the well-being and growth of a foal. Mare's milk provides a foal with nutrients, protective immunity, and microbes. Within the first two weeks of life, there is a risk for a foal to suffer from diarrhea, particularly "foal heat diarrhea" which happens at about the time of a mare's estrus cycle but is more likely due to transitions in the microbiota in the foal's gastrointestinal (GI) tract. We hypothesized that this GI microbiota transition could be caused by changes in lysozyme and microbial populations in the mare's milk. To test this hypothesis, fifteen mare-foal pairs were followed in the first 15 days post-foaling. Every other day milk was collected from mares and rectal swabs were collected from foals. Lysozyme activity in the mare's milk was measured using a fluorescence assay. Microbial DNA was isolated from the milk and swabs and the V4 domain of 16 S rRNA genes were PCR amplified and sequenced using Illumina MiSeq technology. Microbial populations were analyzed using DADA2 and phyloseq within R. RESULTS: Mare's milk lysozyme activity peaked for samples at Day 1 and levels dropped to 72.5% of Day 1 activity by Day 15; however, microbial populations in the mare's milk did not vary significantly over the two weeks. Furthermore, levels of microbial diversity found in foal rectal swabs were initially similar to microbial diversity seen in mare's milk; however, over the first fifteen days, diversity increased for the foal rectal swab microbiota and swab microbial populations differed from milk microbes. A transition occurred shifting from microbes from the phylum Proteobacteria early in rectal swabs to those primarily from the phyla Firmicutes and Bacteroidota after the first few days post-foaling. These phyla contained several families and genera of microbes that promote utilization of milk components in healthy gut transition. Microbial abundance levels correlated more with days post-parturition than with lysozyme activity and mare's milk microbial populations. CONCLUSIONS: The findings suggest that much of the microbial populations responsible for the transition of the foal's gut comes from sources outside of mare's milk species and levels of lysozyme activity.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Femenino , Caballos , Leche , Muramidasa , Diarrea/veterinaria
2.
Sci Rep ; 13(1): 15072, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699945

RESUMEN

A single locus on the X chromosome codes for androgen receptor (AR) although this gene is subject to alternative splicing. AR is expressed in multiple tissues in males and females and is essential for reproductive success in the male. Since male and female mice are viable following naturally occurring and engineered loss of function with male mice infertile as anticipated, functional deletion of AR in pigs was hypothesized to provide a genetic containment strategy for males with edited genomes. In addition, deletion of AR might be a method to manage boar taint, hence contributing to a perceived improvement in animal welfare. The CRISPR/Cas9 technology was used to edit either exon 2 or exon 5 of the pig AR gene. Although pregnancies were established following embryo transfer of edited embryos, they were not maintained beyond day 25. Furthermore, normal M:F sex ratios were present in edited blastocysts and 19-day fetuses, but all fetuses recovered on day 21 or later were female. The pig AR gene differs from the mouse in having a U2 spliceosome component encoded in the intronic region. Hence, the absence of fetal survival beyond day 25 may be due to interference with the U2 component rather than AR.


Asunto(s)
Receptores Androgénicos , Empalmosomas , Masculino , Femenino , Embarazo , Porcinos , Animales , Ratones , Empalmosomas/genética , Receptores Androgénicos/genética , Feto , Intrones , Exones/genética
3.
J Equine Vet Sci ; 126: 104262, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36841345

RESUMEN

Tendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells. Gene expression for common tenogenic, perivascular, and differentiation markers was quantified at 48 and 120 hours. Additionally, cellular metabolism of proliferation was examined every 24 hours for peritenon and tendon proper cells co-cultured with MSCs. MSCs co-cultured with tendon proper or peritenon cells had altered expression profiles demonstrating trend toward tenogenic phenotype with the exception of decreases in type I collagen (COL1A1). Peritenon cells co-cultured with MSCs had a trending and significant decrease in biglycan (BGN) and CSPG4 at 48 hours and 120 hours but overall significant increases in lysyl oxidase (LOX), mohawk (MKX), and scleraxis (SCX) within 48 hours. Tendon proper cells co-cultured with MSCs also exhibited increases in LOX and SCX at 48 hours. Furthermore, cell proliferation improved overall for tendon proper cells co-cultured with MSCs. The co-culture study results suggest that adipose-derived MSCs contribute beneficially to tenogenic stimulation of peritenon or tendon proper cells.


Asunto(s)
Células Madre Mesenquimatosas , Tendones , Caballos , Animales , Técnicas de Cocultivo/veterinaria , Tendones/metabolismo , Células Madre Mesenquimatosas/metabolismo
4.
Front Nutr ; 9: 894640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118759

RESUMEN

Malnourishment is a risk factor for childhood mortality, jeopardizing the health of children by aggravating pneumonia/acute respiratory infections and diarrheal diseases. Malnourishment causes morphophysiological changes resulting in stunting and wasting that have long-lasting consequences such as cognitive deficit and metabolic dysfunction. Using a pig model of malnutrition, the interplay between the phenotypic data displayed by the malnourished animals, the gene expression pattern along the intestinal tract, microbiota composition of the intestinal contents, and hepatic metabolite concentrations from the same animals were correlated using a multi-omics approach. Samples from the duodenum, jejunum, and ileum of malnourished (protein and calorie-restricted diet) and full-fed (no dietary restrictions) piglets were subjected to RNA-seq. Gene co-expression analysis and phenotypic correlations were made with WGCNA, while the integration of transcriptome with microbiota composition and the hepatic metabolite profile was done using mixOmics. Malnourishment caused changes in tissue gene expression that influenced energetic balance, cell proliferation, nutrient absorption, and response to stress. Repression of antioxidant genes, including glutathione peroxidase, in coordination with induction of metal ion transporters corresponded to the hepatic metabolite changes. These data indicate oxidative stress in the intestine of malnourished animals. Furthermore, several of the phenotypes displayed by these animals could be explained by changes in gene expression.

5.
PLoS One ; 17(5): e0258176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35511785

RESUMEN

The rumen is a complex ecosystem that plays a critical role in our efforts to improve feed efficiency of cattle and reduce their environmental impacts. Sequencing of the 16S rRNA gene provides a powerful tool to survey the bacterial and some archaeal. Oral stomach tubing a cow to collect a rumen sample is a rapid, cost-effective alternative to rumen cannulation for acquiring rumen samples. In this study, we determined how sampling method (oral stomach tubing vs cannulated grab sample), as well as rumen fraction type (liquid vs solid), bias the bacterial and archaeal communities observed. Liquid samples were further divided into liquid strained through cheesecloth and unstrained. Fecal samples were also collected to determine how these differed from the rumen sample types. The abundance of major archaeal communities was not different at the family level in samples acquired via rumen cannula or stomach tube. In contrast to the stable archaeal communities across sample type, the bacterial order WCHB1-41 (phylum Kiritimatiellaeota) was enriched in both liquid strained and unstrained samples as well as the family Prevotellaceae as compared to grab samples. However, these liquid samples had significantly lower abundance of Lachnospiraceae compared with grab samples. Solid samples strained of rumen liquid most closely resembled the grab samples containing both rumen liquid and solid particles obtained directly from the rumen cannula; therefore, inclusion of particulate matter is important for an accurate representation of the rumen bacteria. Stomach tube samples were the most variable and were most representative of the liquid phase. In comparison with a grab sample, stomach tube samples had significantly lower abundance of Lachnospiraceae, Fibrobacter and Treponema. Fecal samples did not reflect the community composition of the rumen, as fecal samples had significantly higher relative abundance of Ruminococcaceae and significantly lower relative abundance of Lachnospiraceae compared with grab samples.


Asunto(s)
Ecosistema , Rumen , Alimentación Animal/análisis , Animales , Archaea/genética , Bacterias/genética , Bovinos , Dieta/veterinaria , Femenino , ARN Ribosómico 16S/genética , Rumen/microbiología
6.
Nutr Res ; 91: 44-56, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34134040

RESUMEN

Severe acute malnutrition (SAM), due to poor energy and/or protein intake, is associated with poor growth, depressed immune function, and long-term impacts on metabolic function. As the liver is a major metabolic organ and malnutrition poses metabolic stress, we hypothesize that SAM will be associated with alterations in the hepatic metabolome reflective of oxidative stress, gluconeogenesis, and ketogenesis. Thus, the purpose of this secondary analysis was to understand how SAM alters hepatic metabolism using a piglet model. Weanling piglets were feed either a reference (REF) or protein-energy deficient diet (MAL) for 5 weeks. After dietary treatment MAL piglets were severely underweight (weight-for-age Z-score of -3.29, Welch's t test, P = .0007), moderately wasted (weight-for-length Z-score of-2.49, Welch's t test, P = .003), and tended toward higher hepatic triglyceride content (Welch's t test, P = .07). Hematologic and blood biochemical measurements were assessed at baseline and after dietary treatment. The hepatic metabolome was investigated using 1H-NMR spectroscopy. Hepatic concentrations of betaine, cysteine, and glutathione tended to be lower in MAL (Welch's t test with FDR correction, P < .1), while inosine, lactate, and methionine sulfoxide concentrations were higher in MAL (inosine: P = .0448, lactate: P = .0258, methionine sulfoxide: P = .0337). These changes suggest that SAM is associated with elevated hepatic oxidative stress, increased gluconeogenesis, and alterations in 1-carbon metabolism.


Asunto(s)
Hígado/metabolismo , Metaboloma , Estrés Oxidativo , Desnutrición Aguda Severa/metabolismo , Animales , Betaína/metabolismo , Cisteína/metabolismo , Dieta , Gluconeogénesis , Glutatión/metabolismo , Inosina/metabolismo , Ácido Láctico/metabolismo , Masculino , Metabolómica/métodos , Metionina/análogos & derivados , Metionina/metabolismo , Safrol/análogos & derivados , Safrol/metabolismo , Desnutrición Aguda Severa/complicaciones , Porcinos , Delgadez , Triglicéridos
7.
BMC Res Notes ; 13(1): 459, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993781

RESUMEN

OBJECTIVE: Prophylactic supplementation of psyllium husk is recommended to enhance passage of ingested sand from the gastrointestinal tracts of horses. We hypothesized that psyllium supplementation would increase fecal sand passage and favorably alter bacterial populations in the hindgut. Six yearlings and six mature mares were fed a psyllium supplement in the diet daily for seven days. Voluntarily-voided feces were collected over the course of 29 days, prior, during, and after treatment. Feces were analyzed for acid detergent fiber (ADF) and acid detergent insoluble ash analyses. Microbial DNA was also isolated, and the V4 region of the 16S ribosomal RNA gene was PCR-amplified and sequenced using MiSeq technology. RESULTS: Fecal ADF concentration was greater in adults while silica concentration was greater in yearlings. Mature mare fecal ADF decreased during and just after supplementation but thereafter increased. No changes in silica levels were noted in either group over time. Fecal microbial population phylogenetic diversity was greatest mid-supplementation and lowest at 11 days post-supplementation. Functional profiles of the microbial communities presented some benefits for psyllium supplementation. These findings provide compelling evidence for further detailed studies of prophylactic psyllium supplementation.


Asunto(s)
Microbiota , Psyllium , Animales , Suplementos Dietéticos , Heces , Femenino , Caballos , Filogenia
9.
Animals (Basel) ; 9(11)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739461

RESUMEN

This experiment aimed to evaluate meat quality, fatty acid profile in back-fat, and fecal microbiota of growing-finishing pigs fed with liquid enzymatically digested food waste. Fifty-six crossbred pigs (approximately 32.99 kg body weight) were assigned to one of two treatments with seven replicate pens and four pigs per pen. Pigs were fed with control (corn-soybean meal diets) or food waste from d 0 to 53, while all pigs were fed with the control diet from d 53 to 79. The 16S rRNA sequencing was used to analyze microbiota of feces collected on d 0, 28, 53, and 79. Meat quality and carcass characteristics were measured in one pig per pen at the end of the experiment. Pigs fed with food waste contained more (p < 0.05) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in back-fat. Feeding food waste increased (p < 0.05) the relative abundances of Lachnospiraceae and Ruminococcaceae, but decreased (p < 0.05) the relative abundances of Streptococcaceae and Clostridiaceae in feces on d 29 or d 53. In conclusion, feeding enzymatically digested food waste did not affect pork quality, but provided more beneficial fatty acids to pork consumers and altered the fecal microbiota in growing-finishing pigs.

10.
Front Microbiol ; 10: 1093, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156599

RESUMEN

Improved sequencing and analytical techniques allow for better resolution of microbial communities; however, the agriculture field lacks an updated analysis surveying the fecal microbial populations of dairy cattle in California. This study is a large-scale survey to determine the composition of the bacterial community present in the feces of lactating dairy cattle on commercial dairy operations. For the study, 10 dairy farms across northern and central California representing a variety of feeding and management systems were enrolled. The farms represented three typical housing types including five freestall, two drylot and three pasture-based management systems. Fresh feces were collected from 15 randomly selected cows on each farm and analyzed using 16S rRNA gene amplicon sequencing. This study found that housing type, individual farm, and dietary components significantly affected the alpha diversity of the fecal microbiota. While only one Operational Taxonomic Unit (OTU) was common among all the sampled individuals, 15 bacterial families and 27 genera were shared among 95% of samples. The ratio of the families Coriobacteriaceae to Bifidobacteriaceae was significantly different between housing types and farms with pasture fed animals having a higher relative abundance of Coriobacteriaceae. A majority of samples were positive for at least one OTU assigned to Enterobacteriaceae and 31% of samples contained OTUs assigned to Campylobacter. However, the relative abundance of both taxa was <0.1%. The microbial composition displays individual farm specific signatures, but housing type plays a role. These data provide insights into the composition of the core fecal microbiota of commercial dairy cows in California and will further generate hypotheses for strategies to manipulate the microbiome of cattle.

11.
PLoS One ; 14(4): e0216211, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31039168

RESUMEN

A healthy gastrointestinal (GI) tract with a properly established microbiota is necessary for a foal to develop into a healthy weanling. A foal's health can be critically impacted by aberrations in the microbiome such as with diarrhea which can cause great morbidity and mortality in foals. In this study, we hypothesized that gut establishment in the foal transitioning from a diet of milk to a diet of grain, forage, and pasture would be detectable through analyses of the fecal microbiotas. Fecal samples from 37 sets of foals and mares were collected at multiple time points ranging from birth to weaning. Bacterial DNA was isolated from the samples, and the V4 domain of bacterial 16S rRNA genes were amplified via polymerase chain reaction. Next generation sequencing was then performed on the resulting amplicons, and analyses were performed to characterize the microbiome as well as the relative abundance of microbiota present. We found that bacterial population compositions followed a pattern throughout the early life of the foal in an age-dependent manner. As foals transitioned from milk consumption to a forage and grain diet, there were recognizable changes in fecal microbial compositions from initial populations predominant in the ability to metabolize milk to populations capable of utilizing fibrous plant material. We were also able to recognize differences in microbial populations amongst diarrheic foals as well as microbial population differences associated with differences in management styles between facilities. Future efforts will gauge the effects of lesser abundant bacterial populations that could also be essential to GI health, as well as to determine how associations between microbial population profiles and animal management practices can be used to inform strategies for improving upon the health and growth of horses overall.


Asunto(s)
Heces/microbiología , Tracto Gastrointestinal/microbiología , Caballos/microbiología , Microbiota , Destete , Animales , Animales Recién Nacidos , Bacterias/crecimiento & desarrollo , Biodiversidad , Metagenómica , Filogenia , Análisis de Componente Principal
12.
Br J Nutr ; 120(10): 1131-1148, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30400999

RESUMEN

Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of 5 years and can weaken the immune system and increase the severity of concurrent infections. Livestock milk with the protective properties of human milk is a potential therapeutic to modulate intestinal microbiota and improve outcomes. The aim of this study was to develop an infection model of childhood malnutrition in the pig to investigate the clinical, intestinal and microbiota changes associated with malnutrition and enterotoxigenic Escherichia coli (ETEC) infection and to test the ability of goat milk and milk from genetically engineered goats expressing the antimicrobial human lysozyme (hLZ) milk to mitigate these effects. Pigs were weaned onto a protein-energy-restricted diet and after 3 weeks were supplemented daily with goat, hLZ or no milk for a further 2 weeks and then challenged with ETEC. The restricted diet enriched faecal microbiota in Proteobacteria as seen in stunted children. Before infection, hLZ milk supplementation improved barrier function and villous height to a greater extent than goat milk. Both goat and hLZ milk enriched for taxa (Ruminococcaceae) associated with weight gain. Post-ETEC infection, pigs supplemented with hLZ milk weighed more, had improved Z-scores, longer villi and showed more stable bacterial populations during ETEC challenge than both the goat and no milk groups. This model of childhood disease was developed to test the confounding effects of malnutrition and infection and demonstrated the potential use of hLZ goat milk to mitigate the impacts of malnutrition and infection.


Asunto(s)
Alimentación Animal , Infecciones por Escherichia coli/terapia , Desnutrición/terapia , Leche/química , Muramidasa/química , Animales , Animales Modificados Genéticamente , Peso Corporal , Dieta , Suplementos Dietéticos , Modelos Animales de Enfermedad , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli/microbiología , Heces , Femenino , Microbioma Gastrointestinal , Genotipo , Cabras , Enfermedades Intestinales , Intestinos/microbiología , Masculino , Tamaño de los Órganos , Permeabilidad , Porcinos , Destete
13.
Eur J Pharm Sci ; 112: 79-86, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29128404

RESUMEN

Lysozyme is an important non-specific immune protein in human milk, modulating the immune response against bacterial infections. The aim of this study was to characterize the milk of a transgenic goat expressing a recombinant human lysozyme (rhLZ) in the milk, also testing the in vitro antibacterial activity of the rhLZ milk against pathogens of the gastrointestinal tract. Milk samples collected from Tg and non-transgenic goats (nTg) from the 3rd to the 11th week of lactation were submitted to physicochemical analyses, rhLZ semi-quantification, and to rhLZ antimicrobial activity against Micrococcus luteus, Shiguella sonnei and Enterococcus faecalis. Viability and cell migration were studied in ileum epithelial cells (IEC-18) in absence or presence of E. faecalis, Staphylococcus aureus, Escherichia coli (EPEC) and S. sonnei. The expression of ZO-1 and IL-6 genes was evaluated in IEC-18 to evaluate the effect of rhLZ milk on intestinal barrier function and intestinal inflammation. Physicochemical parameters between goat Tg and nTg milk were similar and within normal values for human consumption, with hLZ concentrations being similar between Tg (224µg/mL) and human (226µg/mL) milk. The Tg milk had bactericidal activity against M. luteus, no bactericidal effect on S. sonnei, and relative to discrete sensitivity against E. feacalis than controls. Better migrating parameters were observed in cells in culture with nTg and Tg than controls. In the presence of pathogens, the Tg milk promoted improved migrating parameters than controls, except for S. sonnei, with lower cell numbers in the presence of nTg samples and E. faecalis and S. sonnei. No differences in ZO-1 relative expression patterns were observed in cultured cells, with increased expression in IL-6 in cells exposed to nTg milk than controls, with the Tg group being similar to all groups. In conclusion, goat milk containing rhLZ demonstrated valid evidence for its potential use as a nutraceutical for improvement of health and nutrition quality in humans.


Asunto(s)
Antibacterianos , Fenómenos Fisiológicos Bacterianos , Tracto Gastrointestinal/microbiología , Cabras/genética , Leche , Muramidasa/genética , Animales , Animales Modificados Genéticamente , Línea Celular , Suplementos Dietéticos , Tracto Gastrointestinal/metabolismo , Humanos , Interleucina-6/genética , Muramidasa/metabolismo , Ratas , Proteína de la Zonula Occludens-1/genética
14.
J Nutr ; 147(11): 2050-2059, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28954839

RESUMEN

Background: Diarrheal diseases in infancy and childhood are responsible for substantial morbidity and mortality in developing nations. Lysozyme, an antimicrobial component of human milk, is thought to play a role in establishing a healthy intestinal microbiota and immune system. Consumption of breast milk has been shown to prevent intestinal infections and is a recommended treatment for infants with diarrhea.Objective: This study aimed to examine the ability of lysozyme-rich goat milk to prevent intestinal infection.Methods: Six-week-old Hampshire-Yorkshire pigs were assigned to treatment groups balanced for weight, sex, and litter and were fed milk from nontransgenic control goats (GM group) or human lysozyme transgenic goats (hLZM group) for 2 wk before they were challenged with porcine-specific enterotoxigenic Escherichia coli (ETEC). Fecal consistency, complete blood counts, intestinal histology, and microbial populations were evaluated.Results: Pigs in the hLZM group had less severe diarrhea than did GM pigs at 24 and 48 h after ETEC infection (P = 0.01 and 0.05, respectively), indicating a less severe clinical disease state. Relative to baseline, postmilk hLZM pigs had 19.9% and 137% enrichment in fecal Bacteroidetes (P = 0.028) and Paraprevotellaceae (P = 0.003), respectively, and a 93.8% reduction in Enterobacteriaceae (P = 0.007), whereas GM pigs had a 60.9% decrease in Lactobacillales (P = 0.003) and an 83.3% enrichment in Burkholderiales (P = 0.010). After ETEC infection, hLZM pigs tended to have lower amounts (68.7% less) of fecal Enterobacteriaceae than did GM pigs (P = 0.058). There were 83.1% fewer bacteria translocated into the mesenteric lymph nodes of hLZM pigs than into those of GM pigs (P = 0.039), and hLZM pigs had 34% lower mucin 1 and 61% higher tumor necrosis factor-α expression in the ileum than did GM pigs (P = 0.046 and 0.034, respectively).Conclusion: Results of this study indicate that human lysozyme milk consumption before and during ETEC infection has a positive effect on clinical disease, intestinal mucosa, and gut microbiota in young pigs.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Enfermedades Intestinales/veterinaria , Leche/química , Muramidasa/administración & dosificación , Enfermedades de los Porcinos/dietoterapia , Alimentación Animal/análisis , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Bacteroidetes , Dieta/veterinaria , Modelos Animales de Enfermedad , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli/dietoterapia , Heces/microbiología , Microbioma Gastrointestinal , Cabras/genética , Enfermedades Intestinales/dietoterapia , Intestinos/microbiología , Muramidasa/análisis , Porcinos , Enfermedades de los Porcinos/microbiología
15.
PLoS One ; 12(2): e0171477, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28170415

RESUMEN

Lactoferrin (LF) is one of the most abundant bioactive glycoproteins in human milk. Glycans attached through N-glycosidic bonds may contribute to Lactoferrin functional activities. In contrast, LF is present in trace amounts in bovine milk. Efforts to increase LF concentration in bovine milk led to alternative approaches using transgenic cows to express human lactoferrin (hLF). This study investigated and compared N-glycans in recombinant human lactoferrin (rhLF), bovine lactoferrin (bLF) and human lactoferrin by Nano-LC-Chip-Q-TOF Mass Spectrometry. The results revealed a high diversity of N-glycan structures, including fucosylated and sialylated complex glycans that may contribute additional bioactivities. rhLF, bLF and hLF had 23, 27 and 18 N-glycans respectively with 8 N-glycan in common overall. rhLF shared 16 N-glycan with bLF and 9 N-glycan with hLF while bLF shared 10 N-glycan with hLF. Based on the relative abundances of N-glycan types, rhLF and hLF appeared to contain mostly neutral complex/hybrid N-glycans (81% and 52% of the total respectively) whereas bLF was characterized by high mannose glycans (65%). Interestingly, the majority of hLF N-glycans were fucosylated (88%), whereas bLF and rhLF had only 9% and 20% fucosylation, respectively. Overall, this study suggests that rhLF N-glycans share more similarities to bLF than hLF.


Asunto(s)
Expresión Génica , Lactoferrina/genética , Leche/metabolismo , Proteínas Recombinantes/genética , Animales , Animales Modificados Genéticamente , Bovinos , Análisis por Conglomerados , Glicosilación , Humanos , Lactoferrina/química , Lactoferrina/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Cell ; 168(3): 473-486.e15, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28129541

RESUMEN

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.


Asunto(s)
Quimerismo , Edición Génica , Mamíferos/embriología , Animales , Blastocisto , Sistemas CRISPR-Cas , Bovinos , Embrión de Mamíferos/citología , Femenino , Humanos , Masculino , Mamíferos/clasificación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Madre Pluripotentes , Ratas , Ratas Sprague-Dawley , Sus scrofa
18.
Transgenic Res ; 25(3): 321-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26820413

RESUMEN

At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.


Asunto(s)
Animales Modificados Genéticamente/genética , Clonación de Organismos/tendencias , Ingeniería Genética/tendencias , Ganado/genética , Agricultura , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Genoma , Ganado/crecimiento & desarrollo , Técnicas de Transferencia Nuclear/tendencias
19.
Food Funct ; 7(2): 665-78, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26751615

RESUMEN

Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of five worldwide. However, the underlying mechanisms are not well understood necessitating an appropriate animal model to answer fundamental questions and conduct translational research into optimal interventions. One potential intervention is milk from livestock that more closely mimics human milk by increased levels of bioactive components that can promote a healthy intestinal epithelium. We tested the ability of cow milk and milk from transgenic cows expressing human lactoferrin at levels found in human milk (hLF milk) to mitigate the effects of malnutrition at the level of the intestine in a pig model of malnutrition. Weaned pigs (3 weeks old) were fed a protein and calorie restricted diet for five weeks, receiving cow, hLF or no milk supplementation daily from weeks 3-5. After three weeks, the restricted diet induced changes in growth, blood chemistry and intestinal structure including villous atrophy, increased ex vivo permeability and decreased expression of tight junction proteins. Addition of both cow and hLF milk to the diet increased growth rate and calcium and glucose levels while promoting growth of the intestinal epithelium. In the jejunum hLF milk restored intestinal morphology, reduced permeability and increased expression of anti-inflammatory IL-10. Overall, this pig model of malnutrition mimics salient aspects of the human condition and demonstrates that cow milk can stimulate the repair of damage to the intestinal epithelium caused by protein and calorie restriction with hLF milk improving this recovery to a greater extent.


Asunto(s)
Lactoferrina/metabolismo , Desnutrición/dietoterapia , Desnutrición/metabolismo , Leche/metabolismo , Animales , Bovinos , Modelos Animales de Enfermedad , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Lactoferrina/análisis , Lactoferrina/genética , Masculino , Desnutrición/genética , Desnutrición/inmunología , Leche/química , Porcinos
20.
Front Vet Sci ; 2: 61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26664988

RESUMEN

Avian gastrointestinal (GI) tracts are highly populated with a diverse array of microorganisms that share a symbiotic relationship with their hosts and contribute to the overall health and disease state of the intestinal tract. The microbiome of the young chick is easily prone to alteration in its composition by both exogenous and endogenous factors, especially during the early posthatch period. The genetic background of the host and exposure to pathogens can impact the diversity of the microbial profile that consequently contributes to the disease progression in the host. The objective of this study was to profile the composition and structure of the gut microbiota in young chickens from two genetically distinct highly inbred lines. Furthermore, the effect of the Salmonella Enteritidis infection on altering the composition makeup of the chicken microbiome was evaluated through the 16S rRNA gene sequencing analysis. One-day-old layer chicks were challenged with S. Enteritidis and the host cecal microbiota profile as well as the degree of susceptibility to Salmonella infection was examined at 2 and 7 days post infection. Our result indicated that host genotype had a limited effect on resistance to S. Enteritidis infection. Alpha diversity, beta diversity, and overall microbiota composition were analyzed for four factors: host genotype, age, treatment, and postinfection time points. S. Enteritidis infection in young chicks was found to significantly reduce the overall diversity of the microbiota population with expansion of Enterobacteriaceae family. These changes indicated that Salmonella colonization in the GI tract of the chickens has a direct effect on altering the natural development of the GI microbiota. The impact of S. Enteritidis infection on microbial communities was also more substantial in the late stage of infection. Significant inverse correlation between Enterobacteriaceae and Lachnospiraceae family in both non-infected and infected groups, suggested possible antagonistic interaction between members of these two taxa, which could potentially influences the overall microbial population in the gut. Our results also revealed that genetic difference between two lines had minimal effect on the establishment of microbiota population. Overall, this study provided preliminary insights into the contributing role of S. Enteritidis in influencing the overall makeup of chicken's gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA