Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Strength Cond Res ; 37(10): e541-e545, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184975

RESUMEN

ABSTRACT: Marchetti, PH, Gomes, WA, Da Silva, JJ, Magalhaes, RA, Teixeira, LFM, and Whiting, WC. Backseat inclination affects the myoelectric activation during the inclined leg press exercise in recreationally trained men. J Strength Cond Res 37(10): e541-e545, 2023-Changes in the angle between the seat and backrest during the inclined leg press (ILP) exercise may influence myoelectric activity. The purpose of this study was to evaluate the myoelectric activity between 2 different angles between the seat and backrest (90° and 125°) during the ILP exercise in recreationally trained men. Fifteen young, resistance-trained men (age: 26.8 ± 5.3 years, height: 173.8 ± 6.6 cm, total body mass: 81.6 ± 7.6 kg) performed 1 set of 10 repetitions at 70% of their body mass during the ILP exercise using 2 different angles between the seat and backrest (ILP90° and ILP125°). Surface electromyography (peak RMS 90 and iEMG) was used to measure the myoelectric activity of the vastus lateralis (VL), biceps femoris (BF), and gluteus maximus (GM). A paired t test was used to measure differences in knee and hip joint displacement, peak RMS 90 , and iEMG between ILP90 and ILP125. The hip angle presented a greater displacement during the ILP125 when compared with ILP90 ( p < 0.001), considering a similar knee joint displacement. For the VL, there was observed greater myoelectric activation (peak RMS 90 and iEMG) during ILP125 when compared with ILP90 ( p < 0.05). For the BF, there was observed greater myoelectric activation (peak RMS 90 and iEMG) during ILP90 when compared with ILP125 ( p < 0.05). However, GM did not present differences between ILP90 and ILP125. In conclusion, the angle between the seat and backrest (ILP90 or ILP125) altered the myoelectric activation of the VL and BF with no difference for the GM.


Asunto(s)
Pierna , Músculo Esquelético , Masculino , Humanos , Adulto Joven , Adulto , Pierna/fisiología , Músculo Esquelético/fisiología , Electromiografía , Músculo Cuádriceps/fisiología , Nalgas
2.
Int J Exerc Sci ; 15(4): 797-807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992501

RESUMEN

The aim of the present study was to compare the myoelectric activation and peak force (PF) between pullover (PO) and pulldown (PW) exercises in different shoulder joint positions during maximal isometric contractions (0o, 45o, 90o, 135o, and 180°). Fifteen young, healthy, resistance-trained men were recruited. The participants performed three maximal voluntary isometric contractions for each exercise at five shoulder joint positions. The myoelectric activation (iEMG) from pectoralis major (PM); latissimus dorsi (LD); posterior deltoid (PD), and PF were measured. For PF, there were significant main effects for exercise and joint positions (p < 0.001). For iEMG PM, there was significant a main effect for joint positions (p < 0.001). There was a significant interaction between exercises and joint positions (p < 0.001). For iEMG LD, there was a significant main effect for joint positions (p < 0.001). There was no significant interaction between exercises and joint positions. For iEMG PD, there was a significant main effect for joint positions (p < 0.001). There was no significant interaction between exercises and joint positions. For RPE, there were no significant differences between exercises and joint positions. The study concludes that specific shoulder joint positions affect PF production and iEMG during both exercises. RPE was not affected.

3.
Sports Biomech ; 21(2): 155-164, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31464179

RESUMEN

The manipulation of the volume and intensity of static stretching (SS) can affect the range of motion (ROM) and muscle force output. The purpose of this study was to investigate the effect of two different SS protocols with different intensities (50% and 85% POD) and volumes (120-s and 240-s) on ROM, peak force, and muscle activity during maximal isometric leg curl exercise in well-trained participants. Fifteen young males (age:27.5 ± 6.1years, height:175.6 ± 4.7cm, and body mass:81.5 ± 10.4kg, 6 ± 2 years of resistance training experience) performed passive hip flexion with two different SS protocols: six stretches of 40-s, with 15-sec rest between each stretch at 50% of the point of discomfort (POD) and three stretches of 40-s, with 15-sec rest between each stretch at 85%POD. The passive hip flexion ROM, biceps femoris muscle activation (integrated electromyography: IEMG), and knee flexors force were monitored during a 3-s maximal voluntary isometric leg curl exercise. ROM increased between pre- and post-intervention for both SS protocols (50%POD: p = 0.016, Δ% = 4.6% and 85%POD: p < 0.001, Δ% = 11.42%). Peak force decreased between pre- and post-intervention only for 85%POD (p = 0.004, Δ% = 23.6%). There were no significant IEMG differences. In conclusion, both SS protocols increased ROM, however, the high-intensity and short-duration SS protocol decreased peak force.


Asunto(s)
Músculos Isquiosurales , Ejercicios de Estiramiento Muscular , Adulto , Fenómenos Biomecánicos , Electromiografía , Humanos , Masculino , Músculo Esquelético , Rango del Movimiento Articular , Adulto Joven
4.
J Strength Cond Res ; 35(12): 3322-3326, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469769

RESUMEN

ABSTRACT: Marchetti, PH, Magalhaes, RA, Gomes, WA, da Silva, JJ, Stecyk, SD, and Whiting, WC. Different knee and ankle positions affect force and muscle activation during prone leg curl in trained subjects. J Strength Cond Res 35(12): 3322-3326, 2021-Different joint positions for biarticular muscles may affect force and muscular activity during single-joint exercises. The aim of this study was to compare the maximal isometric contractions and muscle activation in 2 different knee and ankle positions during prone leg curl exercise in trained subjects. Fifteen resistance-trained men (27 ± 4 years, 178.80 ± 5.72 cm, 86.87 ± 12.51 kg) were recruited. The peak force (PF) and muscle activation of biceps femoris, gastrocnemius lateralis (GL), and soleus lateralis (SL) were measured during knee flexion at 0 and 90° and maximal dorsiflexion (D) or plantarflexion (P). Three maximal voluntary isometric contractions of 5 seconds were performed for each combination of knee and ankle positions. Two-way repeated-measures analysis of variances were used for all dependent variables. For PF, there was a significant difference between ankle positions (D × P) at 90° (p = 0.009) and knee positions (0 × 90°) for D (p < 0.001) and P (p < 0.001). Peak force was greater with the knee at 0° and the ankle maximally dorsiflexed. For GL, there was a significant difference between ankle (D × P) at 0° (p = 0.002) and knee positions (0 × 90°) for D (p = 0.005). Gastrocnemius lateralis activation was greater with the knee at 90° of flexion and the ankle maximally dorsiflexed. For SL, there was a significant difference between ankle positions (D × P): at 90° (p = 0.001) and at 0° (p = 0.002). Soleus lateralis is more active in plantarflexion irrespective of the knee joint position. Isometric contractions with full knee extension produce more strength regardless of the ankle position; neither the knee position nor the ankle position may influence the activity of the hamstrings.


Asunto(s)
Tobillo , Pierna , Articulación del Tobillo , Electromiografía , Humanos , Contracción Isométrica , Articulación de la Rodilla , Masculino , Músculo Esquelético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA