RESUMEN
Bartonella spp. are opportunistic, vectorborne bacteria that can cause disease in both animals and humans. We investigated the molecular occurrence of Bartonella spp. in 634 phlebotomine sand fly specimens, belonging to 44 different sand fly species, sampled during 2017-2021 in north and northeastern Brazil. We detected Bartonella sp. DNA in 8.7% (55/634) of the specimens by using a quantitative real-time PCR targeting the 16S-23S internal transcribed spacer intergenic region. Phylogenetic analysis positioned the Lutzomyia longipalpis sand fly-associated Bartonella gltA gene sequence in the same subclade as Bartonella ancashensis sequences and revealed a Bartonella sp. sequence in a Dampfomyia beltrani sand fly from Mexico. We amplified a bat-associated Bartonella nuoG sequence from a specimen of Nyssomyia antunesi sand fly. Our findings document the presence of Bartonella DNA in sand flies from Brazil, suggesting possible involvement of these insects in the epidemiologic cycle of Bartonella species.
Asunto(s)
Infecciones por Bartonella , Bartonella , Insectos Vectores , Filogenia , Psychodidae , Animales , Bartonella/genética , Bartonella/aislamiento & purificación , Bartonella/clasificación , Brasil/epidemiología , Psychodidae/microbiología , Insectos Vectores/microbiología , Infecciones por Bartonella/microbiología , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/transmisión , ADN Bacteriano/genéticaRESUMEN
This study aimed to determine the sequence type (ST) of Bartonella henselae infecting small Indian mongooses from Saint Kitts via multi-locus sequence typing (MLST). This investigation used stored EDTA blood (n = 22) samples from mongooses previously identified as positive for B. henselae. Chocolate agar plates were enriched with Bartonella alpha-Proteobacteria growth medium (BAPGM) to culture and isolate Bartonella from the blood samples. To perform MLST, DNA was extracted and purified from isolates followed by amplification by conventional PCR (300-500 bp) for eight genes (16S rDNA, batR, gltA, groEL, ftsZ, nlpD, ribC, and rpoB). Bartonella henselae STs were deposited in the PubMLST repository. Out of 22 B. henselae-positive blood samples, isolates were obtained from 12 mongooses (54.5%; 12/22). Each mongoose was infected with one ST. The studied mongoose population was infected with sequence types ST2, ST3, ST8, and a novel ST represented by ST38. Bartonella henselae ST2, ST3 and ST8 infecting mongooses are known to circulate in humans and cats, with ST2 and ST8 associated with Cat Scratch Disease (bartonellosis) in humans. The results presented herein denote the circulation of B. henselae STs with zoonotic potential in mongooses with risk of B. henselae transmission to humans.
Asunto(s)
Bartonella henselae , Herpestidae , Bartonella henselae/genética , Bartonella henselae/aislamiento & purificación , Herpestidae/microbiología , Animales , Tipificación de Secuencias Multilocus , Filogenia , ADN Bacteriano/genética , India , HumanosRESUMEN
Among the Ctenocephalides felis felis-borne pathogens, Bartonella henselae, the main aetiological agent of cat scratch disease (CSD), is of increasing comparative biomedical importance. Despite the importance of B. henselae as an emergent pathogen, prevention of the diseases caused by this agent in cats, dogs and humans mostly relies on the use of ectoparasiticides. A vaccine targeting both flea fitness and pathogen competence is an attractive choice requiring the identification of flea proteins/metabolites with a dual effect. Even though recent developments in vector and pathogen -omics have advanced the understanding of the genetic factors and molecular pathways involved at the tick-pathogen interface, leading to discovery of candidate protective antigens, only a few studies have focused on the interaction between fleas and flea-borne pathogens. Taking into account the period of time needed for B. henselae replication in flea digestive tract, the present study investigated flea-differentially abundant proteins (FDAP) in unfed fleas, fleas fed on uninfected cats, and fleas fed on B. henselae-infected cats at 24 hours and 9 days after the beginning of blood feeding. Proteomics approaches were designed and implemented to interrogate differentially expressed proteins, so as to gain a better understanding of proteomic changes associated with the initial B. henselae transmission period (24 hour timepoint) and a subsequent time point 9 days after blood ingestion and flea infection. As a result, serine proteases, ribosomal proteins, proteasome subunit α-type, juvenile hormone epoxide hydrolase 1, vitellogenin C, allantoinase, phosphoenolpyruvate carboxykinase, succinic semialdehyde dehydrogenase, glycinamide ribotide transformylase, secreted salivary acid phosphatase had high abundance in response of C. felis blood feeding and/or infection by B. henselae. In contrast, high abundance of serpin-1, arginine kinase, ribosomal proteins, peritrophin-like protein, and FS-H/FSI antigen family member 3 was strongly associated with unfed cat fleas. Findings from this study provide insights into proteomic response of cat fleas to B. henselae infected and uninfected blood meal, as well as C. felis response to invading B. henselae over an infection time course, thus helping understand the complex interactions between cat fleas and B. henselae at protein levels.
Asunto(s)
Bartonella henselae , Enfermedades de los Gatos , Ctenocephalides , Felis , Siphonaptera , Animales , Bartonella henselae/genética , Gatos , ProteómicaRESUMEN
Many mammals are established hosts for the vector borne bacterial genus, Bartonella. Small Indian mongooses (Herpestes auropunctatus) have only been reported as a possible host for Bartonella henselae in southern Japan. Confirming Bartonella presence in mongooses from other regions in the world may support their role as potential reservoirs of this human pathogen. Specifically, documenting Bartonella in Caribbean mongooses would identify a potential source of zoonotic risk with mongoose-human contact in the New World. Using serological and molecular techniques, we investigated B. henselae DNA and specific antibody prevalence in 171 mongooses from all six parishes in Grenada, West Indies. Almost a third (32.3%, 54/167) of the tested mongooses were B. henselae seropositive and extracted DNA from 18/51 (35.3%) blood pellets were PCR positive for the citrate synthase (gltA) and/or the ß subunit of RNA polymerase (rpoB) genes. All sequences were identical to B. henselae genotype I, as previously reported from Japan. This study confirms the role of small Indian mongooses as a natural reservoir of B. henselae in the New World.
Asunto(s)
Angiomatosis Bacilar/epidemiología , Bartonella henselae/aislamiento & purificación , Herpestidae/microbiología , Angiomatosis Bacilar/microbiología , Animales , Bartonella henselae/genética , Bartonella henselae/fisiología , Reservorios de Enfermedades/microbiología , Genotipo , Grenada/epidemiología , Zoonosis/epidemiología , Zoonosis/microbiologíaRESUMEN
BACKGROUND: In Argentina, only very few reports are available for canine tick-borne diseases where most are related to parasitic diseases. The objective of this survey was to investigate the prevalence of tick-borne pathogens in 70 dogs from Santa Fé and Córdoba, Argentina. METHODS: Microscopic blood smear examination as well as polymerase chain reaction (PCR) amplification using species-specific markers of Anaplasma, Babesia, Bartonella, Borrelia, Ehrlichia, Francisella, Mycoplasma (hemotropic group) and Rickettsia, followed by DNA sequencing were used to establish the prevalence of each infecting pathogen. RESULTS: Blood smear analysis showed 81% (57/70) prevalence of structures morphologically compatible with hemotropic mycoplasmas. No structures resembling either piroplasms or Anaplasma/Ehrlichia were detected. Hemotropic mycoplasma species (Mycoplasma haematoparvum, Mycoplasma haemocanis and Mycoplasma suis) were the most prevalent pathogens detected with an overall prevalence of 77.1%. Anaplasma platys was detected and identified in 11 of the 70 dogs (15.7%), meanwhile two Bartonella spp. (B. clarridgeiae and an uncharacterized Bartonella sp.) and Babesia vogeli were detected at 3 and 7% prevalence, respectively. CONCLUSIONS: The work presented here describes a high molecular prevalence for hemotropic mycoplasma species in each of the five locations selected. Three Mycoplasma spp., including Mycoplasma suis, reported for the first time in dogs have been identified by DNA amplification and sequencing. This study highlights the risk that these bacterial pathogens represent for companion animals and, due to their potential zoonotic nature, also for people.
Asunto(s)
Enfermedades de los Perros/microbiología , Infecciones por Mycoplasma/veterinaria , Mycoplasma/aislamiento & purificación , Enfermedades por Picaduras de Garrapatas/veterinaria , Animales , Argentina/epidemiología , Enfermedades de los Perros/epidemiología , Perros , Femenino , Masculino , Mycoplasma/clasificación , Mycoplasma/genética , Mycoplasma/fisiología , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/microbiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/microbiologíaRESUMEN
Ehrlichia sp. DNA was amplified from 4 Ehrlichia-seroreactive horses from Mérida, Nicaragua. Sequencing of 16S rDNA, sodB, and groEL genes indicated that the bacterium is most likely a novel Ehrlichia species. The tick vector and the potential for canine and human infection remain unknown.
Asunto(s)
Ehrlichia/clasificación , Ehrlichiosis/veterinaria , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/microbiología , Animales , Ehrlichia/genética , Caballos , Tipificación Molecular , Nicaragua/epidemiología , Filogenia , ARN Ribosómico 16S/genética , SerotipificaciónRESUMEN
BACKGROUND: During a two year period, a 27-year-old female veterinarian experienced migraine headaches, seizures, including status epilepticus, and other neurological and neurocognitive abnormalities. Prior to and during her illness, she had been actively involved in hospital-based work treating domestic animals, primarily cats and dogs, in Grenada and Ireland and anatomical research requiring the dissection of wild animals (including lions, giraffe, rabbits, mongoose, and other animals), mostly in South Africa. The woman reported contact with fleas, ticks, lice, biting flies, mosquitoes, spiders and mites and had also been scratched or bitten by dogs, cats, birds, horses, reptiles, rabbits and rodents. Prior diagnostic testing resulted in findings that were inconclusive or within normal reference ranges and no etiological diagnosis had been obtained to explain the patient's symptoms. METHODS: PCR assays targeting Anaplasma sp. Bartonella sp. and hemotopic Mycoplasma sp. were used to test patient blood samples. PCR positive amplicons were sequenced directly and compared to Gen Bank sequences. In addition, Bartonella alpha Proteobacteria growth medium (BAPGM) enrichment blood culture was used to facilitate bacterial growth and Bartonella spp. serology was performed by indirect fluorescent antibody testing. RESULTS: Anaplasma platys, Bartonella henselae and Candidatus Mycoplasma haematoparvum DNA was amplified and sequenced from the woman's blood, serum or blood culture samples. Her serum was variably seroreactive to several Bartonella sp. antigens. Despite symptomatic improvement, six months of doxycycline most likely failed to eliminate the B. henselae infection, whereas A. platys and Candidatus M. haematoparvum DNA was no longer amplified from post-treatment samples. CONCLUSIONS: As is typical of many veterinary professionals, this individual had frequent exposure to arthropod vectors and near daily contact with persistently bacteremic reservoir hosts, including cats, the primary reservoir host for B. henselae, and dogs, the presumed primary reservoir host for A. platys and Candidatus Mycoplasma haematoparvum. Physicians caring for veterinarians should be aware of the occupational zoonotic risks associated with the daily activities of these animal health professionals.
Asunto(s)
Anaplasma/aislamiento & purificación , Infecciones Bacterianas/diagnóstico , Bartonella henselae/aislamiento & purificación , Coinfección/diagnóstico , Mycoplasma/aislamiento & purificación , Veterinarios , Adulto , Animales , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Técnicas Bacteriológicas , Coinfección/microbiología , Coinfección/patología , Vectores de Enfermedades , Femenino , Grenada , Humanos , Irlanda , Exposición Profesional , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , SudáfricaRESUMEN
The purpose of this study was to determine the serological and molecular prevalence of Bartonella spp. infection in a sick dog population from Brazil. At the São Paulo State University Veterinary Teaching Hospital in Botucatu, 198 consecutive dogs with clinicopathological abnormalities consistent with tick-borne infections were sampled. Antibodies to Bartonella henselae and Bartonella vinsonii subsp. berkhoffii were detected in 2.0% (4/197) and 1.5% (3/197) of the dogs, respectively. Using 16S-23S rRNA intergenic transcribed spacer (ITS) primers, Bartonella DNA was amplified from only 1/198 blood samples. Bartonella seroreactive and/or PCR positive blood samples (n=8) were inoculated into a liquid pre-enrichment growth medium (BAPGM) and subsequently sub-inoculated onto BAPGM/blood-agar plates. PCR targeting the ITS region, pap31 and rpoB genes amplified B. henselae from the blood and/or isolates of the PCR positive dog (ITS: DQ346666; pap31 gene: DQ351240; rpoB: EF196806). B. henselae and B. vinsonii subsp. berkhoffii (pap31: DQ906160; rpoB: EF196805) co-infection was found in one of the B. vinsonii subsp. berkhoffii seroreactive dogs. We conclude that dogs in this study population were infrequently exposed to or infected with a Bartonella species. The B. henselae and B. vinsonii subsp. berkhoffii strains identified in this study are genetically similar to strains isolated from septicemic cats, dogs, coyotes and human beings from other parts of the world. To our knowledge, these isolates provide the first Brazilian DNA sequences from these Bartonella species and the first evidence of Bartonella co-infection in dogs.