Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Environ Manage ; 355: 120539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461640

RESUMEN

Rising carbon emissions caused by population growth and industrialization is a significant environmental challenge in various countries. To combat this issue, Renewable Energy (RE) and Carbon Capture and Storage (CCS) technologies should be commercialized to reduce Greenhouse Gas (GHG) emissions and generate carbon-free energy. One such technology is the use of microalgae, which can directly capture CO2 from the air through photosynthesis and potentially produce biofuels due to their high energy content. However, the carbon capture rate of microalgae varies globally due to numerous parameters and variables affecting microalgae productivity. Additionally, microalgae productivity and carbon capture formulas yield different results worldwide, especially in outdoor industrial-scale cultivation. This research aims to comprehensively review the effective variables and parameters in carbon capture by microalgae based on microalgae productivity and carbon capture formulas. The research also ranked countries based on CO2 production in four different categories to determine whether the biggest carbon producer countries could exhibit suitable weather conditions for microalgae cultivation. Findings reveal optimal ranges of critical variables in the microalgae growth formula, including temperature, solar radiation intensity, Photon Flux Density (PFD), and sunlight duration. The study also analyzes microalgae cultivation, carbon capture, and oxygen production formula in different systems such as Open Ponds (OP), Tubular Photobioreactors (TPBR), and Flat Plate Photobioreactors (FPPBR), while discussing other influential parameters. In conclusion, emphasizing the adjustment and utilization of optimal values of effective parameters in microalgae cultivation not only holds promise for future carbon capture by microalgae but also pushes human beings toward sustainable development goals.


Asunto(s)
Microalgas , Humanos , Carbono , Dióxido de Carbono , Biomasa , Fotobiorreactores , Biocombustibles
2.
Heliyon ; 8(12): e11901, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36506363

RESUMEN

In this research, turbulent flow numerical models in a wavy channel were investigated. The studied channel is simulated in two dimensions and symmetrically in the range of Reynolds numbers from Re=10,000 to 80,000. The significant cause of this research is to investigate and determine the appropriate method for estimating the behavior of turbulent flow in a wavy channel. In this research, the behavior of turbulent flow in a wavy channel will be simulated in 7 different ways, which are k-ω SST, k-ϵ RN, k-ϵ Realizable, k-ϵ Standard, k-ω Standard, Reynolds stress and Spalart-Allmaras. The findings of this research show that the impacts of the presence of flow viscosity (friction) and the presence of adverse pressure gradients are factors that strongly affect the velocity profiles in the upstream areas of the corrugated section. Among the studied models, due to better compatibility and guessing of flow and hydrodynamic properties, k-ω SST methods and Reynolds and Spalart-Allmaras stress are introduced as the best methods for such geometries. On the other hand, increasing the accuracy of other turbulence methods is related to the flow physics and geometric structure of each problem. In this research, the hydrodynamic parameters of the flow such as pressure drop, skin friction factor, and dynamic pressure drop coefficient and vortex contours, and pressure are plotted and described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA