Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1212444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868997

RESUMEN

Introduction: Despite predicted efficacy, immunotherapy in epithelial ovarian cancer (EOC) has limited clinical benefit and the prognosis of patients remains poor. There is thus a strong need for better identifying local immune dynamics and immune-suppressive pathways limiting T-cell mediated anti-tumor immunity. Methods: In this observational study we analyzed by immunohistochemistry, gene expression profiling and flow cytometry the antigenic landscape and immune composition of 48 EOC specimens, with a focus on tumor-infiltrating lymphocytes (TILs). Results: Activated T cells showing features of partial exhaustion with a CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ surface profile were exclusively present in EOC specimens but not in corresponding peripheral blood or ascitic fluid, indicating that the tumor microenvironment might sustain this peculiar phenotype. Interestingly, while neoplastic cells expressed several tumor-associated antigens possibly able to stimulate tumor-specific TILs, macrophages provided both co-stimulatory and inhibitory signals and were more abundant in TILs-enriched specimens harboring the CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ signature. Conclusion: These data demonstrate that EOC is enriched in CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ T lymphocytes, a phenotype possibly modulated by antigen recognition on neoplastic cells and by a combination of inhibitory and co-stimulatory signals largely provided by infiltrating myeloid cells. Furthermore, we have identified immunosuppressive pathways potentially hampering local immunity which might be targeted by immunotherapeutic approaches.


Asunto(s)
Neoplasias Ováricas , Linfocitos T , Humanos , Femenino , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Células Mieloides/metabolismo , Microambiente Tumoral
2.
Cells ; 12(8)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37190044

RESUMEN

The ability to identify the broadest range of targetable gene fusions is crucial to facilitate personalized therapy selection for advanced lung adenocarcinoma (LuADs) patients harboring targetable receptor tyrosine kinase (RTK) genomic alterations. In order to evaluate the most effective testing approach for LuAD targetable gene fusion detection, we analyzed 210 NSCLC selected clinical samples, comparing in situ (Fluorescence In Situ Hybridization, FISH, and ImmunoHistoChemistry, IHC) and molecular (targeted RNA Next-Generation Sequencing, NGS, and RealTime-PCR, RT-PCR) approaches. The overall concordance among these methods was high (>90%), and targeted RNA NGS was confirmed to be the most efficient technique for gene fusion identification in clinical practice, allowing the simultaneous analysis of a large set of genomic rearrangements at the RNA level. However, we observed that FISH was useful to detect targetable fusions in those samples with inadequate tissue material for molecular testing as well as in those few cases whose fusions were not identified by the RNA NGS panel. We conclude that the targeted RNA NGS analysis of LuADs allows accurate RTK fusion detection; nevertheless, standard methods such as FISH should not be dismissed, as they can crucially contribute to the completion of the molecular characterization of LuADs and, most importantly, the identification of patients as candidates for targeted therapies.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Quinasa de Linfoma Anaplásico/genética , Hibridación Fluorescente in Situ/métodos , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Tirosina Quinasas Receptoras/genética , ARN/uso terapéutico , Fusión Génica/genética
3.
Clin Gastroenterol Hepatol ; 21(11): 2825-2833, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36280101

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease, for which it is crucial to promptly detect actionable and prognostic alterations to drive specific therapeutic decisions, regardless of tumor resectability status. Endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) is of key importance for PDAC diagnosis and can contribute significantly to tumor molecular profiling. METHODS: Comprehensive genomic profile by targeted next-generation sequencing (NGS) was performed on 2 independent PDAC patient cohorts. Cohort 1 consisted of 77 patients with resectable PDAC for whom the histologic sample at the time of resection was available; for 56 patients cytologic specimens at the time of diagnosis also were obtained by EUS-FNA. Cohort 2 consisted of 20 patients with unresectable PDAC, for whom only the EUS-FNA cytologic sample was available. RESULTS: In cohort 1, a complete concordant mutational profile between the cytologic sample at diagnosis and the corresponding histologic specimen after surgery was observed in 88% of the cases, proving the ability to detect potential clinically relevant alterations in cytologic samples by NGS analysis. Notably, clinically actionable mutations were identified in 20% of patients. In cohort 2, comprehensive mutational profiling was obtained successfully for all samples. Consistent with the findings of cohort 1, KRAS, TP53, CDKN2A, and SMAD4 were the most altered genes. Most importantly, 15% of the patients harbored actionable mutations. CONCLUSIONS: Our findings show the feasibility of an NGS approach using both surgical specimens and cytologic samples. The model proposed in this study can be included successfully in the clinical setting for comprehensive molecular profiling of all PDAC patients irrespective of their surgical eligibility.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirugía , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/cirugía , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirugía , Neoplasias Pancreáticas
4.
Cancers (Basel) ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36612041

RESUMEN

Assessment of HRD status is now essential for ovarian cancer patient management. A relevant percentage of high-grade serous carcinoma (HGSC) is characterized by HRD, which is caused by genetic alterations in the homologous recombination repair (HRR) pathway. Recent trials have shown that not only patients with pathogenic/likely pathogenic BRCA variants, but also BRCAwt/HRD patients, are sensitive to PARPis and platinum therapy. The most common HRD test is Myriad MyChoice CDx, but there is a pressing need to offer an alternative to outsourcing analysis, which typically requires high costs and lengthy turnaround times. In order to set up a complete in-house workflow for HRD testing, we analyzed a small cohort of HGSC patients using the CE-IVD AmoyDx HRD Focus Panel and compared our results with Myriad's. In addition, to further deepen the mechanisms behind HRD, we analyzed the study cohort by using both a custom NGS panel that analyzed 21 HRR-related genes and FISH analysis to determine the copy numbers of PTEN and EMSY. We found complete concordance in HRD status detected by the Amoy and the Myriad assays, supporting the feasibility of internal HRD testing.

5.
Lung Cancer ; 134: 225-232, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31319985

RESUMEN

OBJECTIVES: Circulating cell-free tumor DNA (ctDNA) isolated from the peripheral blood of non-small-cell lung cancer (NSCLC) patients provides biomarkers for both therapeutic target selection, particularly when direct tumor biopsy is unfeasible, and also for drug resistance monitoring. This study evaluates the reliability and feasibility of ctDNA analysis in an in-house clinical molecular diagnostic workflow. MATERIALS AND METHODS: Mutation profiling by both standard methods and Next-Generation sequencing (NGS) was carried out and compared on 2 independent lung cancer patient cohorts. Cohort 1 consisted of 50 EGFR-mutated NSCLC patients, established on tumour biopsy, for whom ctDNA was collected at disease progression after TKI-inhibitor treatment and could be used to monitor drug resistance. Cohort 2 consisted of 50 newly diagnosed lung cancer patients for whom tumour biopsy was not possible and only ctDNA was available, providing the possibility of biomarker identification. RESULTS: ctDNA analysis of Cohort 1 verified the persistence of the tumour-detected EGFR activating mutation at disease progression by both standard and NGS methods, in 84% and 92% of the cases respectively. The T790M EGFR resistance mutation was identified in 71% of the ctDNA EGFR mutated samples providing vital information for their disease management. In newly diagnosed Cohort 2 patients, EGFR activating mutations were detected in 16% of the patients by both standard and NGS analysis of ctDNA in peripheral blood, providing indication to targeted-therapy otherwise unavailable for this group of patients. CONCLUSION: The presented study investigated lung cancer ctDNA analysis, comparing conventional methods versus NGS sequencing, and demonstrated the successful use of plasma ctDNA as a template for targeted NGS tumor gene panel in an in-house routine clinical practice. More importantly, these data underline the advantages of the clinical application of ctDNA NGS analysis for identification of therapeutic targets, real-time monitoring of therapy, and resistance mechanisms in lung cancer patients.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , ADN de Neoplasias , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Inmunológicos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Biopsia Líquida , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Tomografía Computarizada por Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Cancer Res ; 76(7): 1792-803, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26873846

RESUMEN

In pancreatic ductal adenocarcinomas (PDAC), lymphoid infiltrates, comprised mainly of Th2 cells, predict a poor survival outcome in patients. IL4 signaling has been suggested to stabilize the Th2 phenotype in this setting, but the cellular source of IL4 in PDAC is unclear. Here, we show that basophils expressing IL4 are enriched in tumor-draining lymph nodes (TDLN) of PDAC patients. Basophils present in TDLNs correlated significantly with the Th2/Th1 cell ratio in tumors, where they served as an independent prognostic biomarker of patient survival after surgery. Investigations in mouse models of pancreatic cancer confirmed a functional role for basophils during tumor progression. The recruitment of basophils into TDLN relied partly upon the release of chemokine CCL7/MCP3 by "alternatively activated" monocytes, whereas basophil activation was induced by T-cell-derived IL3. Our results show how basophils recruited and activated in TDLNs under the influence of the tumor microenvironment regulate tumor-promoting Th2 inflammation in PDAC, helping in illuminating a key element of the immune milieu of pancreatic cancer. Cancer Res; 76(7); 1792-803. ©2016 AACR.


Asunto(s)
Basófilos/metabolismo , Carcinoma Ductal Pancreático/inmunología , Inflamación/inmunología , Ganglios Linfáticos/patología , Células Th2/inmunología , Anciano , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Humanos , Inflamación/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Retrospectivos
7.
Oncotarget ; 6(31): 30592-603, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26435479

RESUMEN

Tumor genotyping is an essential step in routine clinical practice and pathology laboratories face a major challenge in being able to provide rapid, sensitive and updated molecular tests. We developed a novel mass spectrometry multiplexed genotyping platform named PentaPanel to concurrently assess single nucleotide polymorphisms in 56 hotspots of the 5 most clinically relevant cancer genes, KRAS, NRAS, BRAF, EGFR and PIK3CA for a total of 221 detectable mutations. To both evaluate and validate the PentaPanel performance, we investigated 1025 tumor specimens of 6 different cancer types (carcinomas of colon, lung, breast, pancreas, and biliary tract, and melanomas), systematically addressing sensitivity, specificity, and reproducibility of our platform. Sanger sequencing was also performed for all the study samples. Our data showed that PentaPanel is a high throughput and robust tool, allowing genotyping for targeted therapy selection of 10 patients in the same run, with a practical turnaround time of 2 working days. Importantly, it was successfully used to interrogate different DNAs isolated from routinely processed specimens (formalin-fixed paraffin embedded, frozen, and cytological samples), covering all the requirements of clinical tests. In conclusion, the PentaPanel platform can provide an immediate, accurate and cost effective multiplex approach for clinically relevant gene mutation analysis in many solid tumors and its utility across many diseases can be particularly relevant in multiple clinical trials, including the new basket trial approach, aiming to identify appropriate targeted drug combination strategies.


Asunto(s)
Análisis Mutacional de ADN/métodos , Técnicas de Diagnóstico Molecular/métodos , Neoplasias/genética , Polimorfismo de Nucleótido Simple/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Bases , Fosfatidilinositol 3-Quinasa Clase I , Receptores ErbB/genética , GTP Fosfohidrolasas/genética , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteínas de la Membrana/genética , Mutación/genética , Neoplasias/diagnóstico , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Reproducibilidad de los Resultados , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...