Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731912

RESUMEN

Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.


Asunto(s)
Encéfalo , Enfermedad de Huntington , Estilo de Vida , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Ejercicio Físico , Animales , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-37949293

RESUMEN

Sphingolipids exert important roles within the cardiovascular system and related diseases. Perturbed sphingolipid metabolism was previously reported in cerebral and renal tissues of spontaneously hypertensive rats (SHR). Specific defects related to the synthesis of sphingolipids and to the metabolism of Sphingosine-1-Phospahte (S1P) were exclusively identified in the stroke-prone (SHRSP) with the respect to the stroke-resistant (SHRSR) strain. In this study, we explored any existing perturbation in either protein or gene expression of enzymes involved in the sphingolipid pathways in cardiac tissue from both SHRSP and SHRSR strains, compared to the normotensive Wistar Kyoto (WKY) strain. The two hypertensive rat models showed an overall perturbation of the expression of different enzymes involved in the sphingolipid metabolism in the heart. In particular, whereas the expression of the S1P-metabolizing-enzyme, SPHK2, was significantly reduced in both SHR strains, SGPL1 protein levels were decreased only in SHRSP. The protein levels of S1P receptors 1-3 were reduced only in the cardiac tissue of SHRSP, whereas S1PR2 levels were reduced in both SHR strains. The de novo synthesis of sphingolipids was aberrant in the two hypertensive strains. A significant reduction of mRNA expression of the Sgms1 and Smpd3 enzymes, implicated in the metabolism of sphingomyelin, was found in both hypertensive strains. Interestingly, Smpd2, devoted to sphingomyelin degradation, was reduced only in the heart of SHRSP. In conclusion, alterations in the expression of sphingolipid-metabolizing enzymes may be involved in the susceptibility to cardiac damage of hypertensive rat strains. Specific differences detected in the SHRSP, however, deserve further elucidation.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Ratas , Animales , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Esfingolípidos , Esfingomielinas , Hipertensión/genética , Hipertensión/metabolismo , Accidente Cerebrovascular/metabolismo
3.
Nat Commun ; 14(1): 3962, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407555

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Modelos Animales de Enfermedad , Pez Cebra/genética , Pez Cebra/metabolismo , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487086

RESUMEN

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Asunto(s)
Miocimia , Animales , Ratones , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potasio Kv.1.2
5.
Biomolecules ; 13(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37189354

RESUMEN

Rett syndrome (RTT, online MIM 312750) is a devastating neurodevelopmental disorder characterized by motor and cognitive disabilities. It is mainly caused by pathogenetic variants in the X-linked MECP2 gene, encoding an epigenetic factor crucial for brain functioning. Despite intensive studies, the RTT pathogenetic mechanism remains to be fully elucidated. Impaired vascular function has been previously reported in RTT mouse models; however, whether an altered brain vascular homeostasis and the subsequent blood-brain barrier (BBB) breakdown occur in RTT and contribute to the disease-related cognitive impairment is still unknown. Interestingly, in symptomatic Mecp2-null (Mecp2-/y, Mecp2tm1.1Bird) mice, we found enhanced BBB permeability associated with an aberrant expression of the tight junction proteins Ocln and Cldn-5 in different brain areas, in terms of both transcript and protein levels. Additionally, Mecp2-null mice showed an altered expression of different genes encoding factors with a role in the BBB structure and function, such as Cldn3, Cldn12, Mpdz, Jam2, and Aqp4. With this study, we provide the first evidence of impaired BBB integrity in RTT and highlight a potential new molecular hallmark of the disease that might open new perspectives for the setting-up of novel therapeutic strategies.


Asunto(s)
Síndrome de Rett , Ratones , Animales , Síndrome de Rett/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo
6.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983032

RESUMEN

Huntington's disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as one of the major determinants. High levels of sphingolipids have been found to localize in the myelin sheaths of oligodendrocytes, where they play an important role in myelination stability and functions. In this study, we investigated any potential existing link between sphingolipid modulation and myelin structure by performing both ultrastructural and biochemical analyses. Our findings demonstrated that the treatment with the glycosphingolipid modulator THI preserved myelin thickness and the overall structure and reduced both area and diameter of pathologically giant axons in the striatum of HD mice. These ultrastructural findings were associated with restoration of different myelin marker protein, such as myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and 2', 3' Cyclic Nucleotide 3'-Phosphodiesterase (CNP). Interestingly, the compound modulated the expression of glycosphingolipid biosynthetic enzymes and increased levels of GM1, whose elevation has been extensively reported to be associated with reduced toxicity of mutant Htt in different HD pre-clinical models. Our study further supports the evidence that the metabolism of glycosphingolipids may represent an effective therapeutic target for the disease.


Asunto(s)
Enfermedad de Huntington , Vaina de Mielina , Ratones , Animales , Vaina de Mielina/metabolismo , Glicoesfingolípidos/metabolismo , Cuerpo Estriado/metabolismo , Neostriado/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteína Huntingtina/genética , Modelos Animales de Enfermedad , Ratones Transgénicos
7.
Prog Lipid Res ; 90: 101224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898481

RESUMEN

Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.


Asunto(s)
Enfermedad de Huntington , Esfingolípidos , Humanos , Esfingolípidos/metabolismo , Metabolismo Energético , Hipoxia/metabolismo
8.
Am J Med Genet A ; 191(4): 1111-1118, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607831

RESUMEN

Multisystemic smooth muscle dysfunction syndrome (MSMDS, OMIM # 613834) is a rare autosomal dominant condition caused by pathogenetic variants of ACTA2 gene that result in impaired muscle contraction. MSMDS is characterized by an increased susceptibility to aneurismal dilatations and dissections, patent ductus arteriosus, early onset coronary artery disease, congenital mydriasis, chronic interstitial lung disease, hypoperistalsis, hydrops of gall bladder, and hypotonic bladder. Here, we report an early diagnosis of a MSMDS related to ACTA2 p.Arg179His (R179H) mutation in a newborn and performed a review of the literature. An early diagnosis of MSMDS is extremely important, because of the severe involvement of cardiovascular system in the MSMDS. Multidisciplinary care and surveillance and timely management of symptoms are important to reduce the risk of complications.


Asunto(s)
Conducto Arterioso Permeable , Enfermedades Hereditarias del Ojo , Midriasis , Trastornos de la Pupila , Recién Nacido , Humanos , Conducto Arterioso Permeable/genética , Midriasis/diagnóstico , Midriasis/genética , Mutación , Enfermedades Hereditarias del Ojo/genética , Actinas/genética
9.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36609826

RESUMEN

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Canales Iónicos/metabolismo , Lisosomas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Canales de Potasio/metabolismo
10.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36116006

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Asunto(s)
Enfermedad de Huntington , Ratones , Humanos , Animales , Enfermedad de Huntington/tratamiento farmacológico , Modelos Teóricos , Imidazoles/farmacología , Glicoesfingolípidos , Modelos Animales de Enfermedad , Proteína Huntingtina/genética
11.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076963

RESUMEN

Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.


Asunto(s)
Glioblastoma , Neuroblastoma , Glioblastoma/metabolismo , Humanos , Hipoxia/metabolismo , Recurrencia Local de Neoplasia , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuroblastoma/metabolismo , Ácidos Siálicos/metabolismo , Microambiente Tumoral
12.
Brain Sci ; 11(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34679332

RESUMEN

Huntington's disease (HD) is a rare hereditary neurodegenerative disorder characterized by multiple metabolic dysfunctions including defects in mitochondrial homeostasis and functions. Although we have recently reported age-related changes in the respiratory capacities in different brain areas in HD mice, the precise mechanisms of how mitochondria become compromised in HD are still poorly understood. In this study, we investigated mRNA and protein levels of selected subunits of electron transport system (ETS) complexes and ATP-synthase in the cortex and striatum of symptomatic R6/2 mice. Our findings reveal a brain-region-specific differential expression of both nuclear and mitochondrial-encoded ETS components, indicating defects of transcription, translation and/or mitochondrial import of mitochondrial ETS components in R6/2 mouse brains.

13.
Cell Death Dis ; 12(10): 919, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625529

RESUMEN

The mitochondrial uncoupling protein 2 (UCP2) plays a protective function in the vascular disease of both animal models and humans. UCP2 downregulation upon high-salt feeding favors vascular dysfunction in knock-out mice, and accelerates cerebrovascular and renal damage in the stroke-prone spontaneously hypertensive rat. Overexpression of UCP2 counteracts the negative effects of high-salt feeding in both animal models. We tested in vitro the ability of UCP2 to stimulate autophagy and mitophagy as a mechanism mediating its protective effects upon high-salt exposure in endothelial and renal tubular cells. UCP2 silencing reduced autophagy and mitophagy, whereas the opposite was true upon UCP2 overexpression. High-salt exposure increased level of reactive oxygen species (ROS), UCP2, autophagy and autophagic flux in both endothelial and renal tubular cells. In contrast, high-salt was unable to induce autophagy and autophagic flux in UCP2-silenced cells, concomitantly with excessive ROS accumulation. The addition of an autophagy inducer, Tat-Beclin 1, rescued the viability of UCP2-silenced cells even when exposed to high-salt. In summary, UCP2 mediated the interaction between high-salt-induced oxidative stress and autophagy to preserve viability of both endothelial and renal tubular cells. In the presence of excessive ROS accumulation (achieved upon UCP2 silencing and high-salt exposure of silenced cells) autophagy was turned off. In this condition, an exogenous autophagy inducer rescued the cellular damage induced by excess ROS level. Our data confirm the protective role of UCP2 toward high-salt-induced vascular and renal injury, and they underscore the role of autophagy/mitophagy as a mechanism counteracting the high-salt-induced oxidative stress damage.


Asunto(s)
Autofagia , Citoprotección , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Proteína Desacopladora 2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Encéfalo/irrigación sanguínea , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Silenciador del Gen , Túbulos Renales Proximales/patología , Mitofagia/efectos de los fármacos , Necrosis , Ratas , Ubiquitina-Proteína Ligasas/metabolismo
14.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208778

RESUMEN

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.


Asunto(s)
Ceramidas/biosíntesis , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Vías Biosintéticas/efectos de los fármacos , Línea Celular Tumoral , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Ácidos Grasos Monoinsaturados/metabolismo , Humanos , Espacio Intracelular/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Esfingolípidos/metabolismo
15.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917593

RESUMEN

Alterations in the metabolism of sphingolipids, a class of biologically active molecules in cell membranes with direct effect on vascular homeostasis, are increasingly recognized as important determinant in different vascular disorders. However, it is not clear whether sphingolipids are implicated in the pathogenesis of hypertension-related cerebrovascular and renal damage. In this study, we evaluated the existence of possible abnormalities related to the sphingolipid metabolism in the brain and kidneys of two well validated spontaneously hypertensive rat strains, the stroke-prone (SHRSP) and the stroke-resistant (SHRSR) models, as compared to the normotensive Wistar Kyoto (WKY) rat strain. Our results showed a global alteration in the metabolism of sphingolipids in both cerebral and renal tissues of both hypertensive strains as compared to the normotensive rat. However, few defects, such as reduced expression of enzymes involved in the metabolism/catabolism of sphingosine-1-phosphate and in the de novo biosynthetic pathways, were exclusively detected in the SHRSP. Although further studies are necessary to fully understand the significance of these findings, they suggest that defects in specific lipid molecules and/or their related metabolic pathways may likely contribute to the pathogenesis of hypertensive target organ damage and may eventually serve as future therapeutic targets to reduce the vascular consequences of hypertension.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Hipertensión/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Encéfalo/patología , Lesiones Encefálicas/patología , Hipertensión/patología , Riñón/patología , Enfermedades Renales/patología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Esfingosina/metabolismo
16.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430140

RESUMEN

Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington's disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington's disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington's disease from this knowledge base.


Asunto(s)
Hipoxia de la Célula/genética , Enfermedad de Huntington/genética , Degeneración Nerviosa/genética , Estrés Oxidativo/genética , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Mitocondrias/genética , Mitocondrias/metabolismo , N-Metilaspartato/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/uso terapéutico
17.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238365

RESUMEN

Identification of molecules able to promote neuroprotective mechanisms can represent a promising therapeutic approach to neurodegenerative disorders including Huntington's disease. Curcumin is an antioxidant and neuroprotective agent, even though its efficacy is limited by its poor absorption, rapid metabolism, systemic elimination, and limited blood-brain barrier (BBB) permeability. Herein, we report on novel biodegradable curcumin-containing nanoparticles to favor the compound delivery and potentially enhance its brain bioavailability. The prepared hyaluronan-based materials able to self-assemble in stable spherical nanoparticles, consist of natural fatty acids chemically conjugated to the natural polysaccharide. The aim of this study is to provide a possible effective delivery system for curcumin with the expectation that, after having released the drug at the specific site, the biopolymer can degrade to nontoxic fragments before renal excretion, since all the starting materials are provided by natural resource. Our findings demonstrate that curcumin-encapsulated nanoparticles enter the cells and reduce their susceptibility to apoptosis in an in vitro model of Huntington's disease.


Asunto(s)
Curcumina/farmacología , Sistemas de Liberación de Medicamentos , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Nanopartículas/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Línea Celular , Curcumina/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ratones , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos/química , Tensoactivos/farmacología
18.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751413

RESUMEN

Mitochondrial dysfunction is crucially involved in aging and neurodegenerative diseases, such as Huntington's Disease (HD). How mitochondria become compromised in HD is poorly understood but instrumental for the development of treatments to prevent or reverse resulting deficits. In this paper, we investigate whether oxidative phosphorylation (OXPHOS) differs across brain regions in juvenile as compared to adult mice and whether such developmental changes might be compromised in the R6/2 mouse model of HD. We study OXPHOS in the striatum, hippocampus, and motor cortex by high resolution respirometry in female wild-type and R6/2 mice of ages corresponding to pre-symptomatic and symptomatic R6/2 mice. We observe a developmental shift in OXPHOS-control parameters that was similar in R6/2 mice, except for cortical succinate-driven respiration. While the LEAK state relative to maximal respiratory capacity was reduced in adult mice in all analyzed brain regions, succinate-driven respiration was reduced only in the striatum and cortex, and NADH-driven respiration was higher as compared to juvenile mice only in the striatum. We demonstrate age-related changes in respirational capacities of different brain regions with subtle deviations in R6/2 mice. Uncovering in situ oxygen conditions and potential substrate limitations during aging and HD disease progression are interesting avenues for future research to understand brain-regional vulnerability in HD.


Asunto(s)
Envejecimiento/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Corteza Motora/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos , Fosforilación Oxidativa
19.
Cell Death Dis ; 11(7): 546, 2020 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-32683420

RESUMEN

The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington's disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q111/111) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q7/7), which correlated with a defective stress response to proteasome inhibition. Overexpression of LAV-BPIFB4 in STHdh Q111/111 cells was able to rescue both the BPIFB4 secretory profile and the proliferative/survival response. According to a well-established immunomodulatory role of LAV-BPIFB4, conditioned media from LAV-BPIFB4-overexpressing STHdh Q111/111 cells were able to educate Immortalized Human Microglia-SV40 microglial cells. While STHdh Q111/111 dying cells were ineffective to induce a CD163 + IL-10high pro-resolving microglia compared to normal STHdh Q7/7, LAV-BPIFB4 transduction promptly restored the central immune control through a mechanism involving the stromal cell-derived factor-1. In line with the in vitro results, adeno-associated viral-mediated administration of LAV-BPIFB4 exerted a CXCR4-dependent neuroprotective action in vivo in the R6/2 HD mouse model by preventing important hallmarks of the disease including motor dysfunction, body weight loss, and mutant huntingtin protein aggregation. In this view, LAV-BPIFB4, due to its pleiotropic ability in both immune compartment and cellular homeostasis, may represent a candidate for developing new treatment for HD.


Asunto(s)
Cuerpo Estriado/patología , Progresión de la Enfermedad , Variación Genética , Enfermedad de Huntington/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Longevidad , Microglía/patología , Fosfoproteínas/genética , Receptores CXCR4/metabolismo , Animales , Bencilaminas/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Línea Celular Transformada , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclamas/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Inflamación/patología , Longevidad/genética , Microglía/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo
20.
Am J Med Genet A ; 182(8): 1977-1984, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573066

RESUMEN

The tubulinopathies refer to a wide range of brain malformations caused by mutations in one of the seven genes encoding different tubulin's isotypes. The ß-tubulin isotype III (TUBB3) gene has a primary function in nervous system development and axon generation and maintenance, due to its neuron-specific expression pattern. A recurrent heterozygous mutation, c.1228G > A; p.E410K, in TUBB3 gene is responsible of a rare disorder clinically characterized by congenital fibrosis of the extraocular muscle type 3 (CFEOM3), intellectual disability and a wide range of neurological and endocrine abnormalities. Other mutations have been described spanning the entire gene and genotype-phenotype correlations have been proposed. We report on a 3-year-old boy in whom clinical exome sequencing allowed to identify a de novo TUBB3 E410K mutation as the molecular cause underlying a complex phenotype characterized by a severe bilateral palpebral ptosis refractory to eye surgery, psychomotor delay, absent speech, hypogonadism, celiac disease, and cyclic vomiting. Brain MRI revealed thinning of the corpus callosum with no evidence of malformation cortical dysplasia. We reviewed available records of patients with TUBB3 E410K mutation and compared their phenotype with the clinical outcome of patients with other mutations in TUBB3 gene. The present study confirms that TUBB3 E410K results in a clinically recognizable phenotype, unassociated to the distinct cortical dysplasia caused by other mutations in the same gene. Early molecular characterization of TUBB3 E410K syndrome is critical for targeted genetic counseling and prompt prospective care in term of neurological, ophthalmological, endocrine, and gastrointestinal follow-up.


Asunto(s)
Fibrosis/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Malformaciones del Desarrollo Cortical/genética , Oftalmoplejía/genética , Tubulina (Proteína)/genética , Encéfalo/anomalías , Preescolar , Fibrosis/complicaciones , Fibrosis/diagnóstico , Fibrosis/patología , Regulación del Desarrollo de la Expresión Génica/genética , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/patología , Neuronas/metabolismo , Neuronas/patología , Oftalmoplejía/complicaciones , Oftalmoplejía/diagnóstico , Oftalmoplejía/patología , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...