Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 394: 130292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185450

RESUMEN

This paper aims to develop and assess the in vitro effects on ruminal fermentation and greenhouse gas parameters of new bioproducts for beef cattle diets, carried out by solid-state fermentation of peach palm shells colonized by Lentinula edodes (SSF) and after Shiitake mushroom cultivation in axenic blocks (SMS). In vitro experiments were performed to assess the in vitro gas production, digestibility, and fiber degradation of formulated total diets. Bioproducts presented high ß-glucans (9.44---11.27 %) and protein (10.04---8.35 %) contents, as well as similar digestibility to conventional diets. SMS diet had the lowest methane and carbon dioxide (19.1 and 84.1 mM/g OM) production, and the SSF diet presented lower carbon dioxide production (98.9 mM/g OM) than other diets, whereas methane was similar. This study highlighted a sustainable use of byproducts for beef cattle diets, promising for digestibility, nutritional value, ß-glucans incorporation, and environmental impact mitigation, favoring the circular bioeconomy.


Asunto(s)
Arecaceae , Hongos Shiitake , beta-Glucanos , Animales , Bovinos , Hongos Shiitake/metabolismo , Alimentación Animal/análisis , Dióxido de Carbono/metabolismo , Digestión , Arecaceae/metabolismo , Dieta/veterinaria , Fermentación , Metano/metabolismo , Rumen/metabolismo
2.
Transl Anim Sci ; 7(1): txad048, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37256191

RESUMEN

A total of 120 Nellore bulls, [initial body weight (BW) = 307 ± 11.6 kg and 12 mo of age] were allocated into 12 collective pens (10 bulls per pen) in a commercial feedlot to evaluate the effects of a specific blend of tannin and saponins on enteric methane (CH4) emissions. The study was a completely randomized design, in which pens were considered the experimental units (N = 6 pens per treatment) and were randomly allocated into one of two treatments: 1) Control (CON), a basal diet with monensin supplementation (25 mg/kg dry matter [DM]; Rumensin, Elanco Animal Health, Greenfield, IN, USA), or 2) Control + a specific blend of tannin and saponins (TAN; 7 g/kg DM; composed of quebracho and chestnut tannin extracts along with carriers from cereals rich in saponins; SilvaFeed BX, Silvateam, San Michele Mondovi, CN, Italy). After the adaptation period (20 d), the experiment was divided into two phases: growing phase (21 to 53 d; total of 33 d) and fattening phase (54 to 139 d; total of 86 d). Enteric methane emissions were estimated using the sulfur hexafluoride (SF6) tracer gas technique. Interactions between treatment and period (growing vs. fattening) were detected for daily CH4 emissions, in which animals fed TAN reduced CH4 emissions by 17.3% during the fattening period compared to bulls fed CON (P = 0.05). In addition, bulls fed TAN had lower CH4 emissions expressed by dry matter intake (DMI) during the fattening period compared to bulls fed CON (P = 0.06). The findings presented herein indicate that a specific blend of tannin and saponins can be used as a strategy to reduce enteric CH4 emissions and its intensity of Nellore bulls finished in feedlot systems under tropical conditions.

3.
Animals (Basel) ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36611633

RESUMEN

Peanut meal has an excellent total protein content but also has low rumen undegradable protein (RUP). High-performance ruminants have high RUP requirements. We aimed to evaluate the effects of processing peanut meal with an autoclave and conventional and microwave ovens, with and without using xylose on its ruminal kinetics degradation parameters and intestinal digestibility (ID). In situ studies were conducted to determine dry matter (DM) and crude protein (CP) rumen degradation kinetics. In vitro studies were conducted to evaluate intestinal digestibility (ID). The control treatment had a greater fraction A for DM and CP than peanut meals processed with an autoclave or conventional oven. The control had greater kd for CP compared with the microwave. The addition of xylose decreased fraction A, the degradation rate of fraction B (kd) and RUP, and increased the protein B fraction of autoclaved peanut meal. We observed a decrease in effective degradability (ED) and increased RUP for processed treatments in all experiments compared with the control. Processing methods did not affect the protein ID of autoclaved peanut meal compared to the control. An interaction between xylose and heating time was observed, where increasing heating time linearly reduced the ID of xylose-untreated treatments. Overall, these results suggest that the tested methods effectively increased the RUP content of peanut meal.

4.
Animals (Basel) ; 13(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36611654

RESUMEN

The ruminal kinetics of protein sources may be changed by heat and sugar treatments. Thus, these processing methods may be used as alternatives to increase beef-cattle diets' rumen undegradable protein (RUP). We aimed to evaluate the effects of processing cottonseed meals with autoclave, conventional, and microwave ovens, with and without using xylose, on the ruminal kinetics degradation parameters and intestinal digestibility (ID). In situ studies were conducted, and each sample was incubated in the rumen to determine dry matter (DM) and crude protein (CP) rumen degradation kinetics. In vitro studies were also conducted to evaluate ID. The control treatment had a greater soluble fraction for DM and CP than processed cottonseed meals (p < 0.05). The addition of xylose decreased both DM and CP water-soluble fractions (fraction A) of cottonseed meal heated in a conventional oven (p < 0.05). Compared to the control, we observed a decrease in effective degradability and increased RUP for all processed methods (p < 0.05). Furthermore, conventional and microwave ovens showed greater ID than the control. Moreover, xylose-treated groups heated in the autoclave and conventional ovens had greater ID than xylose-untreated cottonseed meal. Under these experimental conditions, cottonseed RUP was increased by the evaluated processing methods.

5.
Trop Anim Health Prod ; 46(7): 1229-34, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25224394

RESUMEN

The objective was to evaluate the emission of enteric methane by Nellore cattle subjected to different nutritional plans, as well as the intake and digestibility of nutrients from the diets supplied. Forty-seven animals in a confinement system (feedlot) were fed a corn silage-based diet for 35 days. Afterwards, these animals were evaluated in a grazing system during the rainy periods, in Urochloa brizantha cv Marandu paddocks, for 44 days. Chromic oxide was used as external marker to estimate the fecal production of animals. Samples of feces, ingredients, and pasture were collected and sampled for subsequent chemical analyses. The SF6 tracer gas technique was adopted to quantify the methane gas emitted by the animals. The experimental design was completely randomized, using procedure GLM of software SAS (9.2), including the fixed effects of sex and nutritional plan and the linear effect of the co-variable weights. Means were analyzed by Tukey's test at 5 % probability. The intakes of total dry matter and organic matter were greater for the animals subjected to the feedlot diet (P < 0.05). In this treatment, the animals showed greater dry matter digestibility, whereas the organic matter digestibility was lower (P < 0.05). The digestibility of the dry matter was higher in confinement, whereas the digestibility of the organic matter was lower in this treatment (P < 0.05). Emission of CH4/day (104.01 g) by the animals fed the feedlot diet (P < 0.05) was greater, but the loss of consumed energy for methane production (CH4/CEB) and methane emission per dry matter consumed were lower in relation to the grazing treatment (3.75 vs 4.23 % and 11.67 vs 15.71 g/kg). The better quality of the diet in the feedlot promoted lower energy losses as methane.


Asunto(s)
Crianza de Animales Domésticos/métodos , Fenómenos Fisiológicos Nutricionales de los Animales , Bovinos/fisiología , Dieta/veterinaria , Digestión/fisiología , Metano/biosíntesis , Alimentación Animal/análisis , Animales , Brasil , Bovinos/metabolismo , Ingestión de Alimentos/fisiología , Femenino , Modelos Lineales , Masculino , Metano/metabolismo , Poaceae , Ensilaje , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...