Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Commun ; 15(1): 5574, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956430

RESUMEN

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.


Asunto(s)
Animales de Laboratorio , Guías como Asunto , Animales , Animales de Laboratorio/genética , Reproducibilidad de los Resultados , Proyectos de Investigación , Experimentación Animal/normas , Investigación Biomédica/normas
2.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585881

RESUMEN

Standard chow diet contributes to reproducibility in animal model experiments since chows differ in nutrient composition, which can independently influence phenotypes. However, there is little evidence of the role of timing in the extent of variability caused by chow exposure. Here, we measured the impact of diet (5V5M, 5V0G, 2920X, and 5058) and timing of exposure (adult exposure (AE), lifetime exposure (LE), and developmental exposure (DE)) on growth & development, metabolic health indicators, and gut bacterial microbiota profiles across genetically identical C57BL6/J mice. Diet drove differences in macro- and micronutrient intake for all exposure models. AE had no effect on measured outcomes. However, LE mice exhibited significant sex-dependent diet effects on growth, body weight, and body composition. LE effects were mostly absent in the DE model, where mice were exposed to chow differences from conception to weaning. Both AE and LE models exhibited similar diet-driven beta diversity profiles for the gut bacterial microbiota, with 5058 diet driving the most distinct profile. Diet-induced beta diversity profiles were sex-dependent for LE mice. Compared to AE, LE drove 9X more diet-driven differentially abundant genera, majority of which were the result of inverse effects of 2920X and 5058. Our findings demonstrate that lifetime exposure to different chow diets has the greatest impact on reproducibility of experimental measures that are common components of preclinical mouse model studies. Importantly, weaning DE mice onto a uniform diet is likely an effective way to reduce unwanted phenotypic variability among experimental models.

3.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464063

RESUMEN

The MiniMUGA genotyping array is a popular tool for genetic QC of laboratory mice and genotyping of samples from most types of experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA in 2020. Here we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for inbred strains and increase the number of constructs that can reliably be detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have made changes to the layout of the report, to simplify the interpretation and completeness of the analysis and added a table summarizing the ideogram. We believe that these changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.

4.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36711658

RESUMEN

The INO80 protein is the main catalytic subunit of the INO80-chromatin remodeling complex, which is critical for DNA repair and transcription regulation in murine spermatocytes. In this study, we explored the role of INO80 in silencing genes on meiotic sex chromosomes in male mice. INO80 immunolocalization at the XY body in pachytene spermatocytes suggested a role for INO80 in the meiotic sex body. Subsequent deletion of Ino80 resulted in high expression of sex-linked genes. Furthermore, the active form of RNA polymerase II at the sex body of Ino80 -null pachytene spermatocytes indicates incomplete inactivation of sex-linked genes. A reduction in the recruitment of initiators of meiotic sex chromosome inhibition (MSCI) argues for INO80-facilitated recruitment of DNA repair factors required for silencing sex-linked genes. This role of INO80 is independent of a common INO80 target H2A.Z. Instead, in the absence of INO80, a reduction in chromatin accessibility at DNA repair sites occurs on the sex chromosomes. These data suggest a role for INO80 in DNA repair factor localization, thereby facilitating the silencing of sex-linked genes during the onset of pachynema. Summary Statement: Chromatin accessibility and DNA repair factor localization at the sex chromosomes are facilitated by INO80, which regulates sex-linked gene silencing during meiotic progression in spermatocytes.

5.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37292940

RESUMEN

We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Those germ cells showing a Cre-induced loss of ARID1A were arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Consistent with this defect, mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. By investigating potential mechanisms underlying these anomalies, we identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA Meiotic Recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

7.
G3 (Bethesda) ; 12(6)2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35416979

RESUMEN

RBBP4 is a subunit of the chromatin remodeling complexes known as Polycomb repressive complex 2 and histone deacetylase 1/2-containing complexes. These complexes are responsible for histone H3 lysine 27 methylation and deacetylation, respectively. How RBBP4 modulates the functions of these complexes remains largely unknown. We generated viable Rbbp4 mutant alleles in mouse embryonic stem cell lines by CRISPR-Cas9. The mutations disrupted Polycomb repressive complex 2 assembly and H3K27me3 establishment on target chromatin and altered histone H3 lysine 27 acetylation genome wide. Moreover, Rbbp4 mutant cells underwent dramatic changes in transcriptional profiles closely tied to the deregulation of H3K27ac. The alteration of H3K27ac due to RBBP4 dysfunction occurred on numerous cis-regulatory elements, especially putative enhancers. These data suggest that RBBP4 plays a central role in regulating histone H3 lysine 27 methylation and acetylation to modulate gene expression.


Asunto(s)
Histonas , Lisina , Proteína 4 de Unión a Retinoblastoma/metabolismo , Acetilación , Animales , Expresión Génica , Genómica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Complejo Represivo Polycomb 2/genética
8.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35006254

RESUMEN

INO80 is the catalytic subunit of the INO80-chromatin remodeling complex that is involved in DNA replication, repair and transcription regulation. Ino80 deficiency in murine spermatocytes (Ino80cKO) results in pachytene arrest of spermatocytes due to incomplete synapsis and aberrant DNA double-strand break repair, which leads to apoptosis. RNA-seq on Ino80cKO spermatocytes revealed major changes in transcription, indicating that an aberrant transcription program arises upon INO80 depletion. In Ino80WT spermatocytes, genome-wide analysis showed that INO80-binding sites were mostly promoter proximal and necessary for the regulation of spermatogenic gene expression, primarily of premeiotic and meiotic genes. Furthermore, most of the genes poised for activity, as well as those genes that are active, shared INO80 binding. In Ino80cKO spermatocytes, most poised genes demonstrated de-repression due to reduced H3K27me3 enrichment and, in turn, showed increased expression levels. INO80 interacts with the core PRC2 complex member SUZ12 and promotes its recruitment. Furthermore, INO80 mediates H2A.Z incorporation at the poised promoters, which was reduced in Ino80cKO spermatocytes. Taken together, INO80 is emerging as a major regulator of the meiotic transcription program by mediating poised chromatin establishment through SUZ12 binding.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Espermatocitos/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Células Cultivadas , Cromatina/genética , Proteínas de Unión al ADN/genética , Código de Histonas , Masculino , Meiosis , Ratones , Ratones Endogámicos C57BL , Complejo Represivo Polycomb 2/genética , Regiones Promotoras Genéticas , Unión Proteica , Espermatogénesis
9.
Mamm Genome ; 33(1): 203-212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34313795

RESUMEN

The Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request. The four Centers maintain an archive of nearly 60,000 mutant alleles as live mice, frozen germplasm, and/or embryonic stem (ES) cells. Since its inception, the Centers have fulfilled 13,184 orders for mutant mouse models from 9591 scientists at 6626 institutions around the globe. Centers also provide numerous services that facilitate using mutant mouse models obtained from the MMRRC, including genetic assays, microbiome analysis, analytical phenotyping and pathology, cryorecovery, mouse husbandry, infectious disease surveillance and diagnosis, and disease modeling. The ICSC coordinates activities between the Centers, manages the website (mmrrc.org) and online catalog, and conducts communication, outreach, and education to the research community. Centers preserve, secure, and protect mutant mouse lines in perpetuity, promote rigor and reproducibility in scientific experiments using mice, provide experiential training and consultation in the responsible use of mice in research, and pursue cutting edge technologies to advance biomedical studies using mice to improve human health. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest standards of rigor and reproducibility, while donating investigators benefit by having their mouse lines preserved, protected, and distributed in compliance with NIH policies.


Asunto(s)
Investigación Biomédica , Modelos Animales de Enfermedad , Ratones , National Institutes of Health (U.S.) , Animales , Humanos , Ratones/genética , Reproducibilidad de los Resultados , Estados Unidos
10.
Nat Commun ; 12(1): 6581, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772938

RESUMEN

The mammalian SWI/SNF nucleosome remodeler is essential for spermatogenesis. Here, we identify a role for ARID2, a PBAF (Polybromo - Brg1 Associated Factor)-specific subunit, in meiotic division. Arid2cKO spermatocytes arrest at metaphase-I and are deficient in spindle assembly, kinetochore-associated Polo-like kinase1 (PLK1), and centromeric targeting of Histone H3 threonine3 phosphorylation (H3T3P) and Histone H2A threonine120 phosphorylation (H2AT120P). By determining ARID2 and BRG1 genomic associations, we show that PBAF localizes to centromeres and promoters of genes known to govern spindle assembly and nuclear division in spermatocytes. Consistent with gene ontology of target genes, we also identify a role for ARID2 in centrosome stability. Additionally, misexpression of genes such as Aurkc and Ppp1cc (Pp1γ), known to govern chromosome segregation, potentially compromises the function of the chromosome passenger complex (CPC) and deposition of H3T3P, respectively. Our data support a model where-in PBAF activates genes essential for meiotic cell division.


Asunto(s)
Cromatina , Mamíferos/genética , Meiosis , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , ADN Helicasas/metabolismo , Silenciador del Gen , Histonas/metabolismo , Masculino , Metafase , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Factores de Transcripción/genética , Transcriptoma , Quinasa Tipo Polo 1
11.
Cell Rep ; 35(2): 108966, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852868

RESUMEN

Persistent virus infections can cause pathogenesis that is debilitating or lethal. During these infections, virus-specific T cells fail to protect due to weakened antiviral activity or failure to persist. These outcomes are governed by histone modifications, although it is unknown which enzymes contribute to T cell loss or impaired function over time. In this study, we show that T cell receptor-stimulated CD8+ T cells increase their expression of UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome) to enhance gene expression. During chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, UTX binds to enhancers and transcription start sites of effector genes, allowing for improved cytotoxic T lymphocyte (CTL)-mediated protection, independent of its trimethylation of histone 3 lysine 27 (H3K27me3) demethylase activity. UTX also limits the frequency and durability of virus-specific CD8+ T cells, which correspond to increased expression of inhibitory receptors. Thus, UTX guides gene expression patterns in CD8+ T cells, advancing early antiviral defenses while reducing the longevity of CD8+ T cell responses.


Asunto(s)
Citotoxicidad Inmunológica/genética , Histona Demetilasas/genética , Memoria Inmunológica/genética , Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Histona Demetilasas/deficiencia , Histona Demetilasas/inmunología , Histonas/genética , Histonas/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal , Linfocitos T Citotóxicos/virología , Carga Viral/genética , Carga Viral/inmunología , Proteína del Gen 3 de Activación de Linfocitos
12.
Genetics ; 216(4): 905-930, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33067325

RESUMEN

The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Técnicas de Genotipaje/métodos , Ratones/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Femenino , Estudio de Asociación del Genoma Completo/normas , Genotipo , Técnicas de Genotipaje/normas , Masculino , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Polimorfismo Genético , Reproducibilidad de los Resultados , Procesos de Determinación del Sexo
13.
Development ; 147(21)2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32541010

RESUMEN

Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.


Asunto(s)
Anomalías Múltiples/enzimología , Anomalías Múltiples/patología , Diferenciación Celular , Cara/anomalías , Enfermedades Hematológicas/enzimología , Enfermedades Hematológicas/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Cresta Neural/enzimología , Cresta Neural/patología , Enfermedades Vestibulares/enzimología , Enfermedades Vestibulares/patología , Alelos , Animales , Linaje de la Célula , Movimiento Celular , Condrocitos/patología , Cara/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Mutación/genética , Osteogénesis , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Hueso Paladar/patología , Fenotipo , Cráneo/patología
14.
EMBO J ; 39(9): e102808, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32154941

RESUMEN

Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic, and biochemical studies to show that HNF1A recruits KDM6A to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates differentiated acinar cell programs, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. We also identify a subset of non-classical PDAC samples that exhibit the HNF1A/KDM6A-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A deficiency promotes PDAC. They also connect the tumor-suppressive role of KDM6A deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Histona Demetilasas/genética , Neoplasias Pancreáticas/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Histona Demetilasas/metabolismo , Humanos , Ratones , Mutación , Especificidad de Órganos , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo
15.
Genetics ; 213(4): 1093-1110, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31796550

RESUMEN

Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.


Asunto(s)
Linaje de la Célula/genética , Redes Reguladoras de Genes , ARN Largo no Codificante/genética , Cromatina/metabolismo , Humanos , Modelos Biológicos , Estabilidad Proteica , ARN Largo no Codificante/química
16.
Mol Cell ; 75(3): 523-537.e10, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31256989

RESUMEN

Long noncoding RNAs (lncRNAs) cause Polycomb repressive complexes (PRCs) to spread over broad regions of the mammalian genome. We report that in mouse trophoblast stem cells, the Airn and Kcnq1ot1 lncRNAs induce PRC-dependent chromatin modifications over multi-megabase domains. Throughout the Airn-targeted domain, the extent of PRC-dependent modification correlated with intra-nuclear distance to the Airn locus, preexisting genome architecture, and the abundance of Airn itself. Specific CpG islands (CGIs) displayed characteristics indicating that they nucleate the spread of PRCs upon exposure to Airn. Chromatin environments surrounding Xist, Airn, and Kcnq1ot1 suggest common mechanisms of PRC engagement and spreading. Our data indicate that lncRNA potency can be tightly linked to lncRNA abundance and that within lncRNA-targeted domains, PRCs are recruited to CGIs via lncRNA-independent mechanisms. We propose that CGIs that autonomously recruit PRCs interact with lncRNAs and their associated proteins through three-dimensional space to nucleate the spread of PRCs in lncRNA-targeted domains.


Asunto(s)
ARN Largo no Codificante/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina , Islas de CpG/genética , Genoma/genética , Impresión Genómica/genética , Humanos , Ratones , Complejo Represivo Polycomb 1/genética , Regiones Promotoras Genéticas , Células Madre/metabolismo , Trofoblastos/metabolismo
17.
Development ; 146(19)2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043422

RESUMEN

A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Mamíferos/genética , Proteínas del Grupo Polycomb/metabolismo , Espermatogonias/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Acetilación , Animales , Cromatina/metabolismo , ADN Helicasas/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Código de Histonas , Lisina/metabolismo , Masculino , Meiosis/genética , Ratones , Modelos Genéticos , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Espermatogénesis/genética
18.
Cell Rep ; 27(2): 514-524.e5, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970254

RESUMEN

Obesity in humans is associated with poorer health outcomes after infections compared with non-obese individuals. Here, we examined the effects of white adipose tissue and obesity on T cell responses to viral infection in mice. We show that lymphocytic choriomeningitis virus (LCMV) grows to high titer in adipose tissue. Virus-specific T cells enter the adipose tissue to resolve infection but then remain as a memory population distinct from memory T cells in lymphoid tissues. Memory T cells in adipose tissue are abundant in lean mice, and diet-induced obesity further increases memory T cell number in adipose tissue and spleen. Upon re-challenge infection, memory T cells rapidly cause severe pathogenesis, leading to increases in lipase levels, calcification of adipose tissue, pancreatitis, and reduced survival in obese mice but not lean mice. Thus, obesity leads to a unique form of viral pathogenesis involving memory T cell-dependent adipocyte destruction and damage to other tissues.


Asunto(s)
Tejido Adiposo/fisiología , Obesidad/genética , Linfocitos T/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Obesidad/patología
19.
Biometrics ; 75(3): 864-874, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30666629

RESUMEN

RNA sequencing allows one to study allelic imbalance of gene expression, which may be due to genetic factors or genomic imprinting (i.e., higher expression of maternal or paternal allele). It is desirable to model both genetic and parent-of-origin effects simultaneously to avoid confounding and to improve the power to detect either effect. In studies of genetically tractable model organisms, separation of genetic and parent-of-origin effects can be achieved by studying reciprocal cross of two inbred strains. In contrast, this task is much more challenging in outbred populations such as humans. To address this challenge, we propose a new framework to combine experimental strategies and novel statistical methods. Specifically, we propose to study genetic and imprinting effects in family trios with RNA-seq data from the children and genotype data from both parents and children, and quantify genetic effects by cis-eQTLs. Towards this end, we have extended our method that studies the eQTLs of RNA-seq data (Sun, Biometrics 2012, 68(1): 1-11) to model both cis-eQTL and parent-of-origin effects, and evaluated its performance using extensive simulations. Since sample size may be limited in family trios, we have developed a data analysis pipeline that borrows information from external data of unrelated individuals for cis-eQTL mapping. We have also collected RNA-seq data from the children of 30 family trios, applied our method to analyze this dataset, and identified some previously reported imprinted genes as well as some new candidates of imprinted genes.


Asunto(s)
Impresión Genómica , Modelos Estadísticos , Sitios de Carácter Cuantitativo/genética , Familia , Humanos , Padres , Análisis de Secuencia de ARN
20.
Nat Genet ; 51(1): 26-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510238

RESUMEN

SCHLAP1 is a long noncoding RNA that is reported to function by depleting the SWI/SNF complex from the genome. We investigated the hypothesis that SCHLAP1 affects only specific compositions of SWI/SNF. Using several assays, we found that SWI/SNF is not depleted from the genome by SCHLAP1 and that SWI/SNF is associated with many coding and noncoding RNAs, suggesting that SCHLAP1 may function in a SWI/SNF-independent manner.


Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Línea Celular , Genoma Humano/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA