Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Neurology ; 103(4): e209697, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39102614

RESUMEN

BACKGROUND AND OBJECTIVES: The diagnostic process for myofibrillar myopathies (MFM) and distal myopathies (DM) is particularly complex because of the large number of causative genes, the existence of still molecularly undefined disease entities, and the overlapping features between the 2 categories. This study aimed to characterize a large cohort of patients affected by MFM and DM and identify the most important diagnostic and prognostic aspects of these diseases. METHODS: Patients with either a myopathological diagnosis of MFM or a clinical diagnosis of DM were included in this retrospective multicentric national study. Demographic, genetic, clinical, and histopathologic data of anonymized patients were collected from the neuromuscular centers of the Italian Association of Myology network. RESULTS: Data regarding 132 patients with MFM (mean age 57.0 ± 15.8 years, 49% female) and 298 patients with DM (mean age 50.7 ± 15.9 years, 40% female) were gathered from 20 neuromuscular centers. 69 patients fulfilled the criteria for both groups (distal myopathies with myofibrillar pathology, DM-MP). Molecular confirmation was achieved in 63% of the patients. Fifty-two percent of the patients with MFM carried pathogenic variants in either DES (n = 30), MYOT (n = 20), or DNAJB6 (n = 18), which were also the most frequent disease-causing genes in DM-MP, while GNE (n = 44) and MYH7 (n = 23) were the genes most commonly carrying pathogenic variants in DM. The mean age at onset varied from <25 years in patients with causative variants in MYH7 and DYSF to 59 years in patients with myotilinopathies. Cardiac involvement was reported in 29% of patients with MFM and 16% of patients with DM, with DES and MYH7 variants significantly associated with the development of cardiomyopathy. Respiratory impairment was more prevalent in patients with TTN and DES variants and rare in other disorders such as GNE myopathy and dysferlinopathies, which were instead associated, together with DNAJB6-related and PLIN4-related myopathies, with the risk of losing ambulation during the disease course. DISCUSSION: The Italian cohort of patients with MFM and DM recapitulates the phenotypic heterogeneity and the partial overlap between the 2 groups. However, in relative contrast to the encountered phenotypic variability, only 5 genes accounted for most of the molecular diagnoses. Specific genetic entities are associated with significantly increased risk of developing cardiorespiratory complications or loss of ambulation, which has relevant prognostic implications.


Asunto(s)
Miopatías Distales , Miopatías Estructurales Congénitas , Humanos , Femenino , Masculino , Persona de Mediana Edad , Italia , Adulto , Miopatías Distales/genética , Miopatías Distales/patología , Miopatías Distales/epidemiología , Estudios Retrospectivos , Anciano , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología
2.
Muscle Nerve ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096012

RESUMEN

INTRODUCTION/AIMS: Fatigue (subjective perception) and fatigability (objective motor performance worsening) are relevant aspects of disability in individuals with spinal muscular atrophy (SMA). The effect of nusinersen on fatigability in SMA patients has been investigated with conflicting results. We aimed to evaluate this in adult with SMA3. METHODS: We conducted a multicenter retrospective cohort study, including adult ambulant patients with SMA3, data available on 6-minute walk test (6MWT) and Hammersmith Functional Motor Scale-Expanded (HFMSE) at baseline and at least at 6 months of treatment with nusinersen. We investigated fatigability, estimated as 10% or higher decrease in walked distance between the first and sixth minute of the 6MWT, at baseline and over the 14-month follow-up. RESULTS: Forty-eight patients (56% females) were included. The 6MWT improved after 6, 10, and 14 months of treatment (p < 0.05). Of the 27 patients who completed the entire follow-up, 37% improved (6MWT distance increase ≥30 m), 48.2% remained stable, and 14.8% worsened (6MWT distance decline ≥30 m). Fatigability was found at baseline in 26/38 (68%) patients and confirmed at subsequent time points (p < 0.05) without any significant change over the treatment period. There was no correlation between fatigability and SMN2 copy number, sex, age at disease onset, age at baseline, nor with 6MWT total distance and baseline HFMSE score. DISCUSSION: Fatigability was detected at baseline in approximately 2/3 of SMA3 walker patients, without any correlation with clinical features, included motor performance. No effect on fatigability was observed during the 14-month treatment period with nusinersen.

3.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569017

RESUMEN

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Asunto(s)
Enfermedades Musculares , Sarcómeros , Animales , Humanos , Calcio/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Sarcómeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Pez Cebra/metabolismo
4.
Br J Radiol ; 97(1157): 947-953, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38574384

RESUMEN

OBJECTIVES: Becker muscular dystrophy (BMD) is a relatively less investigated neuromuscular disease, partially overlapping the phenotype of Duchenne dystrophy (DMD). Physiopathological and anatomical patterns are still not comprehensively known, despite recent effort in the search of early biomarkers. Aim of this study was to selectively compare normal appearing muscles of BMD with healthy controls. METHODS: Among a pool of 40 BMD patients and 20 healthy controls, Sartorius and gracilis muscles were selected on the basis of a blinded clinical quantitative/qualitative evaluation, if classified as normal (0 or 1 on Mercuri scale) and subsequently segmented on diffusion tensor MRI scans with a tractographic approach. Diffusion derived parameters were extracted. RESULTS: Non-parametric testing revealed significant differences between normal and normal appearing BMD derived parameters in both muscles, the difference being more evident in sartorius. Bonferroni-corrected P-values (<.05) of Mann-Whitney test could discriminate between BMD and controls for standard deviation of all diffusion parameters (mean diffusivity, fractional anisotropy, axial and radial diffusivity) in both sartorius and gracilis, while in sartorius the significant difference was found also in the average values of the same parameters (with exception of RD). CONCLUSIONS: This method could identify microstructural alterations in BMD normal appearing sartorius and gracilis. ADVANCES IN KNOWLEDGE: Diffusion based MRI could be able to identify possible early or subclinical microstructural alterations in dystrophic patients with BMD.


Asunto(s)
Imagen de Difusión Tensora , Músculo Esquelético , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/complicaciones , Imagen de Difusión Tensora/métodos , Masculino , Adulto , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Adulto Joven , Adolescente , Estudios de Casos y Controles , Femenino , Niño , Músculo Grácil/diagnóstico por imagen
5.
Front Neurol ; 15: 1340693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500810

RESUMEN

Background: Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation: Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion: Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.

6.
Neurol Sci ; 45(4): 1691-1698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37968431

RESUMEN

BACKGROUND: Distrophinopathies are a heterogeneous group of neuromuscular disorders due to mutations in the DMD gene. Different isoforms of dystrophin are also expressed in the cerebral cortex and Purkinje cells. Despite cognitive abnormalities in Duchenne muscular dystrophy subjects that have been described in the literature, little is known about a comprehensive cognitive profile in Becker muscular dystrophy patients. AIM: The aim of this study was to assess cognitive functioning in Becker muscular dystrophy patients by using an extensive neuropsychological battery. Our hypothesis is that the most impaired functions are the highly intentional and conscious ones, such as working memory functions, which require a prolonged state of cellular activation. METHODS: We performed an extensive neuropsychological assessment on 28 Becker muscular dystrophy patients from 18 to 65 years old. As control subjects, we selected 20 patients with limb-girdle muscular dystrophy, whose clinical picture was similar except for cognitive integrity. The evaluation, although extended to all areas, was focused on prefrontal control skills, with a distinction between inhibitory processes of selective attention and activating processes of working memory. RESULTS AND CONCLUSIONS: Significant underperformances were found exclusively in the Dual Task and PASAT tests, to demonstrate a selective impairment of working memory that, while not causing intellectual disability, reduces the intellectual potential of patients with Becker muscular dystrophy.


Asunto(s)
Distrofia Muscular de Duchenne , Adolescente , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Cognición , Distrofina/genética , Función Ejecutiva , Memoria a Corto Plazo , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética
7.
Acta Myol ; 42(2-3): 65-70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090548

RESUMEN

Objective: Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disease affecting the lower motor neuron, carrying a significant burden on patients' general motor skills and quality of life, characterized by a great variability in phenotypic expression. As new therapeutic options make their appearance on the scene, sensitive clinical tools and outcome measures are needed, especially in adult patients undergoing treatment, in which the expected clinical response is a mild improvement or stabilization of disease progression. Methods: Here, we describe a new functional motor scale specifically designed for evaluating the endurance dimension for the upper and lower limbs in adult SMA patients. Results: The scale was first tested in eight control healthy subjects and then validated in ten adult SMA patients, proving intra- and inter-observer reliability. We also set up an evaluation protocol by using wearable devices including surface EMG and accelerometer. Conclusions: The endurance evaluation should integrate the standard clinical monitoring in the management and follow-up of SMA adult patients.


Asunto(s)
Atrofia Muscular Espinal , Calidad de Vida , Adulto , Humanos , Reproducibilidad de los Resultados , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Fatiga , Protocolos Clínicos
8.
Front Genet ; 14: 1278572, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098475

RESUMEN

Isolated mitochondrial respiratory chain Complex IV (Cytochrome c Oxidase or COX) deficiency is the second most frequent isolated respiratory chain defect. Causative mutations are mainly identified in structural COX subunits or in proteins involved in the maturation and assembly of the COX holocomplex. We describe an Italian familial case of mitochondrial myopathy due to a variant in the COX assembly factor 8 gene (COA8). Patient 1 is a 52-year-old woman who presented generalized epilepsy and retinitis pigmentosa at 10 years of age. From her early adulthood she complained about cramps and myalgia after exercise, and bilateral hearing loss emerged. Last neurological examination (52 years of age) showed bilateral ptosis, muscle weakness, peripheral neuropathy, mild dysarthria and dysphonia, cognitive impairment. Muscle biopsy had shown the presence of ragged-red fibers. Patient 2 (Patient 1's sister) is a 53-year-old woman presenting fatigability, myalgia, and hearing loss. Neurological examination showed ptosis and muscle weakness. Muscle biopsy displayed a diffuse reduction of COX activity staining and ragged-red fibers. Both sisters presented secondary amenorrhea. After ruling out mtDNA mutations, Whole Exome Sequencing analysis identified the novel homozygous COA8 defect c.170_173dupGACC, p.(Pro59fs) in the probands. Loss-of-function COA8 mutations have been associated with cavitating leukoencephalopathy with COX deficiency in 9 reported individuals. Disease course shows an early-onset rapid clinical deterioration, affecting both cognitive and motor functions over months, followed by stabilization and slow improvement over several years. Our findings expand the clinical spectrum of COA8-related disease. We confirm the benign course of this rare disorder, highlighting its (intrafamilial) clinical variability.

9.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139231

RESUMEN

Limb girdle muscular dystrophies (LGMDs) are a group of genetically inherited neuromuscular diseases with a very variable clinical presentation and overlapping traits. Over the last few years there has been an increasing interest in the use of non-invasive circulating biomarkers to monitor disease progression and to evaluate the efficacy of therapeutic approaches. Our aim was to identify the miRNA signature with potential value for LGMD patient screening and stratification. Using miRCURY LNA miRNA qPCR Serum/Plasma Panel, we analyzed 179 miRNAs from 16 patients, divided in four pools based on their genetic diagnosis, and from healthy controls. The miRNAs analysis showed a total of 107 dysregulated miRNAs in LGMD patients when compared to the healthy controls. After filtering via skeletal tissue expression and gene/pathways target analysis, the number of dysregulated miRNAs drastically reduced. Six selected miRNAs-let-7f-5p (in LGMDR1), miR-20a-5p (in LGMDR2), miR-130b-5p, miR-378a-5p (both in LGMDR3), miR-376c-3p and miR-382-5p (both in LGMDR4)-whose expression was significantly lower compared to controls in the different LGMD pools, were further investigated. The bioinformatic analysis of the target genes in each selected miRNA revealed ECM-receptor interaction and TGF-beta signaling as the most involved pathways. The correlation analysis showed a good correlation of let-7f-5p with fibrosis and with the cross sectional area of type I and type II fibers, while miR-130b-5p showed a good correlation with the age of onset of the disease. The receiver operating characteristic curves showed how single miRNAs were able to discriminate a specific group of LGMD patients and how the combination of six miRNAs was able to discriminate LGMD patients from controls.


Asunto(s)
MicroARNs , Distrofia Muscular de Cinturas , Humanos , MicroARNs/genética , Perfilación de la Expresión Génica , Biomarcadores , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Curva ROC
10.
Dermatol Pract Concept ; 13(3)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557111

RESUMEN

INTRODUCTION: Androgenic alopecia (AGA) staging is still based on macroscopic scales, yet the introduction of trichoscopy is gradually bringing an important change, even though it remains an eye-based method. However, recently developed artificial intelligence-assisted programs can execute automated count of trichoscopic patterns. Nevertheless, to interpret data elaborated by these programs can be complex. Machine learning algorithms might represent an innovative solution. Among them, support vector machine (SVM) models are among the best methods for classification. OBJECTIVES: Our aim was to develop a SVM algorithm, based on three trichoscopic patterns, able to classify AGA patients and to calculate a severity index. METHODS: We retrospectively analyzed trichoscopic images from 200 AGA patients using Trichoscale Pro® software, calculating the number of vellus hair, empty follicles and single hair follicular units. Then, we elaborated a SVM model, based on these three patterns and on sex, able to classify patients as affected by mild AGA or moderate-severe AGA, and able to calculate the probability of the classification being correct, expressed as percentage (from 50% to 100%). This probability estimate is higher in patients with more AGA trichoscopic patterns and, thus, it might serve as a severity index. RESULTS: For training and test datasets, accuracy was 94.3% and 90.0% respectively, while the Area Under the Curve was 0.99 and 0.95 respectively. CONCLUSIONS: We believe our SVM model could be of great support for dermatologists in the management of AGA, especially in better assessing disease severity and, thus, in prescribing a more appropriate therapy.

11.
Cell Mol Life Sci ; 80(8): 241, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543540

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.


Asunto(s)
Multiómica , Atrofia Muscular Espinal , Humanos , Estudios Retrospectivos , Estudios de Seguimiento , Proteoma , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo
12.
Eur J Hum Genet ; 31(12): 1414-1420, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37468577

RESUMEN

Pathogenic variants impacting upon assembly of mitochondrial respiratory chain Complex IV (Cytochrome c Oxidase or COX) predominantly result in early onset mitochondrial disorders often leading to CNS, skeletal and cardiac muscle manifestations. The aim of this study is to describe a molecular defect in the COX assembly factor gene COX18 as the likely cause of a neonatal form of mitochondrial encephalo-cardio-myopathy and axonal sensory neuropathy. The proband is a 19-months old female displaying hypertrophic cardiomyopathy at birth and myopathy with axonal sensory neuropathy and failure to thrive developing in the first months of life. Serum lactate was consistently increased. Whole exome sequencing allowed the prioritization of the unreported homozygous substitution NM_001297732.2:c.667 G > C p.(Asp223His) in COX18. Patient's muscle biopsy revealed severe and diffuse COX deficiency and striking mitochondrial abnormalities. Biochemical and enzymatic studies in patient's myoblasts and in HEK293 cells after COX18 silencing showed a severe impairment of both COX activity and assembly. The biochemical defect was partially rescued by delivery of wild-type COX18 cDNA into patient's myoblasts. Our study identifies a novel defect of COX assembly and expands the number of nuclear genes involved in a mitochondrial disorder due to isolated COX deficiency.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa , Enfermedades Musculares , Femenino , Humanos , Lactante , Deficiencia de Citocromo-c Oxidasa/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Células HEK293 , Proteínas Mitocondriales/genética , Mutación
13.
Genes (Basel) ; 14(7)2023 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-37510298

RESUMEN

Introduction/Aims HyperCKemia is considered a hallmark of neuromuscular diseases. It can be either isolated or associated with cramps, myalgia, weakness, myoglobinuria, or rhabdomyolysis, suggesting a metabolic myopathy. The aim of this work was to investigate possible genetic causes in order to help diagnose patients with recurrent hyperCKemia or clinical suspicion of inherited metabolic myopathy. Methods A cohort of 139 patients (90 adults and 49 children) was analyzed using a custom panel containing 54 genes associated with hyperCKemia. Results A definite genetic diagnosis was obtained in 15.1% of cases, while candidate variants or variants of uncertain significance were found in a further 39.5%. Similar percentages were obtained in patients with infantile or adult onset, with some different causative genes. RYR1 was the gene most frequently identified, either with single or compound heterozygous variants, while ETFDH variants were the most common cause for recessive cases. In one patient, mRNA analysis allowed identifying a large LPIN1 deletion missed by DNA sequencing, leading to a certain diagnosis. Conclusion These data confirm the high genetic heterogeneity of hyperCKemia and metabolic myopathies. The reduced diagnostic yield suggests the existence of additional genes associated with this condition but also allows speculation that a significant number of cases presenting with hyperCKemia or muscle symptoms are due to extrinsic, not genetic, factors.


Asunto(s)
Enfermedades Musculares , Enfermedades Neuromusculares , Rabdomiólisis , Adulto , Niño , Humanos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Neuromusculares/genética , Mialgia/complicaciones , Mialgia/genética , Rabdomiólisis/genética , Rabdomiólisis/complicaciones , Músculos , Fosfatidato Fosfatasa
14.
BMC Neurol ; 23(1): 165, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095452

RESUMEN

BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a systemic disorder in which multi-organ dysfunction may occur from mitochondrial metabolism failure. Maternally inherited mutations in the MT-TL1 gene are the most frequent causes for this disorder. Clinical manifestations may include stroke-like episodes, epilepsy, dementia, headache and myopathy. Among these, acute visual failure, usually in association with cortical blindness, can occur because of stroke-like episodes affecting the occipital cortex or the visual pathways. Vision loss due to optic neuropathy is otherwise considered a typical manifestation of other mitochondrial diseases such as Leber hereditary optic neuropathy (LHON). CASE PRESENTATION: Here we describe a 55-year-old woman, sister of a previously described patient with MELAS harbouring the m.3243A > G (p.0, MT-TL1) mutation, with otherwise unremarkable medical history, that presented with subacute, painful visual impairment of one eye, accompanied by proximal muscular pain and headache. Over the next weeks, she developed severe and progressive vision loss limited to one eye. Ocular examination confirmed unilateral swelling of the optic nerve head; fluorescein angiography showed segmental perfusion delay in the optic disc and papillary leakage. Neuroimaging, blood and CSF examination and temporal artery biopsy ruled out neuroinflammatory disorders and giant cell arteritis (GCA). Mitochondrial sequencing analysis confirmed the m.3243A > G transition, and excluded the three most common LHON mutations, as well as the m.3376G > A LHON/MELAS overlap syndrome mutation. Based on the constellation of clinical symptoms and signs presented in our patient, including the muscular involvement, and the results of the investigations, the diagnosis of optic neuropathy as a stroke-like event affecting the optic disc was performed. L-arginine and ubidecarenone therapies were started with the aim to improve stroke-like episode symptoms and prevention. The visual defect remained stable with no further progression or outbreak of new symptoms. CONCLUSIONS: Atypical clinical presentations must be always considered in mitochondrial disorders, even in well-described phenotypes and when mutational load in peripheral tissue is low. Mitotic segregation of mitochondrial DNA (mtDNA) does not allow to know the exact degree of heteroplasmy existent within different tissue, such as retina and optic nerve. Important therapeutic implications arise from a correct diagnosis of atypical presentation of mitochondrial disorders.


Asunto(s)
Acidosis Láctica , Síndrome MELAS , Atrofia Óptica Hereditaria de Leber , Enfermedades del Nervio Óptico , Neuropatía Óptica Isquémica , Accidente Cerebrovascular , Femenino , Humanos , Síndrome MELAS/genética , Neuropatía Óptica Isquémica/complicaciones , Mutación , Accidente Cerebrovascular/complicaciones , Enfermedades del Nervio Óptico/complicaciones , Atrofia Óptica Hereditaria de Leber/genética , ADN Mitocondrial/genética , Trastornos de la Visión/complicaciones , Cefalea/complicaciones
15.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982625

RESUMEN

Collagen VI is a heterotrimeric protein expressed in several tissues and involved in the maintenance of cell integrity. It localizes at the cell surface, creating a microfilamentous network that links the cytoskeleton to the extracellular matrix. The heterotrimer consists of three chains encoded by COL6A1, COL6A2 and COL6A3 genes. Recessive and dominant molecular defects cause two main disorders, the severe Ullrich congenital muscular dystrophy and the relatively mild and slowly progressive Bethlem myopathy. We analyzed the clinical aspects, pathological features and mutational spectrum of 15 COL6-mutated patients belonging to our cohort of muscular dystrophy probands. Patients presented a heterogeneous phenotype ranging from severe forms to mild adult-onset presentations. Molecular analysis by NGS detected 14 different pathogenic variants, three of them so far unreported. Two changes, localized in the triple-helical domain of COL6A1, were associated with a more severe phenotype. Histological, immunological and ultrastructural techniques were employed for the validation of the genetic variants; they documented the high variability in COL6 distribution and the extracellular matrix disorganization, highlighting the clinical heterogeneity of our cohort. The combined use of these different technologies is pivotal in the diagnosis of COL6 patients.


Asunto(s)
Enfermedades Musculares , Distrofias Musculares , Humanos , Enfermedades Musculares/genética , Distrofias Musculares/metabolismo , Mutación , Matriz Extracelular/metabolismo , Fenotipo , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo
16.
Front Neurol ; 14: 1095121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793492

RESUMEN

Objective: No treatments are approved for Becker muscular dystrophy (BMD). This study investigated the efficacy and safety of givinostat, a histone deacetylase pan-inhibitor, in adults with BMD. Methods: Males aged 18-65 years with a diagnosis of BMD confirmed by genetic testing were randomized 2:1 to 12 months treatment with givinostat or placebo. The primary objective was to demonstrate statistical superiority of givinostat over placebo for mean change from baseline in total fibrosis after 12 months. Secondary efficacy endpoints included other histological parameters, magnetic resonance imaging and spectroscopy (MRI and MRS) measures, and functional evaluations. Results: Of 51 patients enrolled, 44 completed treatment. At baseline, there was greater disease involvement in the placebo group than givinostat, based on total fibrosis (mean 30.8 vs. 22.8%) and functional endpoints. Mean total fibrosis did not change from baseline in either group, and the two groups did not differ at Month 12 (least squares mean [LSM] difference 1.04%; p = 0.8282). Secondary histology parameters, MRS, and functional evaluations were consistent with the primary. MRI fat fraction in whole thigh and quadriceps did not change from baseline in the givinostat group, but values increased with placebo, with LSM givinostat-placebo differences at Month 12 of -1.35% (p = 0.0149) and -1.96% (p = 0.0022), respectively. Adverse events, most mild or moderate, were reported by 88.2% and 52.9% patients receiving givinostat and placebo. Conclusion: The study failed to achieve the primary endpoint. However, there was a potential signal from the MRI assessments suggesting givinostat could prevent (or slow down) BMD disease progression.

17.
Genes (Basel) ; 14(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36833224

RESUMEN

Thanks to advances in gene sequencing, RYR1-related myopathy (RYR1-RM) is now known to manifest itself in vastly heterogeneous forms, whose clinical interpretation is, therefore, highly challenging. We set out to develop a novel unsupervised cluster analysis method in a large patient population. The objective was to analyze the main RYR1-related characteristics to identify distinctive features of RYR1-RM and, thus, offer more precise genotype-phenotype correlations in a group of potentially life-threatening disorders. We studied 600 patients presenting with a suspicion of inherited myopathy, who were investigated using next-generation sequencing. Among them, 73 index cases harbored variants in RYR1. In an attempt to group genetic variants and fully exploit information derived from genetic, morphological, and clinical datasets, we performed unsupervised cluster analysis in 64 probands carrying monoallelic variants. Most of the 73 patients with positive molecular diagnoses were clinically asymptomatic or pauci-symptomatic. Multimodal integration of clinical and histological data, performed using a non-metric multi-dimensional scaling analysis with k-means clustering, grouped the 64 patients into 4 clusters with distinctive patterns of clinical and morphological findings. In addressing the need for more specific genotype-phenotype correlations, we found clustering to overcome the limits of the "single-dimension" paradigm traditionally used to describe genotype-phenotype relationships.


Asunto(s)
Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Enfermedades Musculares/genética , Estudios de Asociación Genética , Genotipo , Fenotipo
18.
Front Neurol ; 14: 1281953, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304327

RESUMEN

Limb-girdle muscular dystrophy autosomal recessive 8 (LGMDR8) is a rare clinical manifestation caused by the presence of biallelic variants in the TRIM32 gene. We present the clinical, molecular, histopathological, and muscle magnetic resonance findings of a novel 63-years-old LGMDR8 patient of Italian origins, who went undiagnosed for 24 years. Clinical exome sequencing identified two TRIM32 missense variants, c.1181G > A p.(Arg394His) and c.1781G > A p.(Ser594Asp), located in the NHL1 and NHL4 structural domains, respectively, of the TRIM32 protein. We conducted a literature review of the clinical and instrumental data associated to the so far known 26 TRIM32 variants, carried biallelically by 53 LGMDR8 patients reported to date in 20 papers. Our proband's variants were previously identified only in three independent LGMDR8 patients in homozygosis, therefore our case is the first in literature to be described as compound heterozygous for such variants. Our report also provides additional data in support of their pathogenicity, since p.(Arg394His) is currently classified as a variant of uncertain significance, while p.(Ser594Asp) as likely pathogenic. Taken together, these findings might be useful to improve both the genetic counseling and the diagnostic accuracy of this rare neuromuscular condition.

19.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498898

RESUMEN

OBJECTIVE: To define the prevalence of variants in collagen VI genes through a next-generation sequencing (NGS) approach in undiagnosed patients with suspected neuromuscular disease and to propose a diagnostic flowchart to assess the real pathogenicity of those variants. METHODS: In the past five years, we have collected clinical and molecular information on 512 patients with neuromuscular symptoms referred to our center. To pinpoint variants in COLVI genes and corroborate their real pathogenicity, we sketched a multistep flowchart, taking into consideration the bioinformatic weight of the gene variants, their correlation with clinical manifestations and possible effects on protein stability and expression. RESULTS: In Step I, we identified variants in COLVI-related genes in 48 patients, of which three were homozygous variants (Group 1). Then, we sorted variants according to their CADD score, clinical data and complementary studies (such as muscle and skin biopsy, study of expression of COLVI on fibroblast or muscle and muscle magnetic resonance). We finally assessed how potentially pathogenic variants (two biallelic and 12 monoallelic) destabilize COL6A1-A2-A3 subunits. Overall, 15 out of 512 patients were prioritized according to this pipeline. In seven of them, we confirmed reduced or absent immunocytochemical expression of collagen VI in cultured skin fibroblasts or in muscle tissue. CONCLUSIONS: In a real-world diagnostic scenario applied to heterogeneous neuromuscular conditions, a multistep integration of clinical and molecular data allowed the identification of about 3% of those patients harboring pathogenetic collagen VI variants.


Asunto(s)
Colágeno Tipo VI , Enfermedades Neuromusculares , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Enfermedades Neuromusculares/epidemiología , Enfermedades Neuromusculares/genética , Homocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Músculos/metabolismo , Mutación
20.
Skelet Muscle ; 12(1): 23, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175989

RESUMEN

BACKGROUND: Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence the homeostasis of mitochondrial membranes. Autosomal recessive CHKB mutations cause a rare form of congenital muscular dystrophy known as megaconial congenital muscular dystrophy (MCMD). CASE PRESENTATION: We describe a novel proband presenting MCMD due to unpublished CHKB mutations. The patient is a 6-year-old boy who came to our attention for cognitive impairment and slowly progressive muscular weakness. He was the first son of non-consanguineous healthy parents from Sri Lanka. Neurological examination showed proximal weakness at four limbs, weak osteotendinous reflexes, Gowers' maneuver, and waddling gate. Creatine kinase levels were mildly increased. EMG and brain MRI were normal. Left quadriceps skeletal muscle biopsy showed a myopathic pattern with nuclear centralizations and connective tissue increase. Histological and histochemical staining suggested subsarcolemmal localization and dimensional increase of mitochondria. Ultrastructural analysis confirmed the presence of enlarged ("megaconial") mitochondria. Direct sequencing of CHKB identified two novel defects: the c.1060G > C (p.Gly354Arg) substitution and the c.448-56_29del intronic deletion, segregating from father and mother, respectively. Subcloning of RT-PCR amplicons from patient's muscle RNA showed that c.448-56_29del results in the partial retention (14 nucleotides) of intron 3, altering physiological splicing and transcript stability. Biochemical studies showed reduced levels of the mitochondrial fission factor DRP1 and the severe impairment of mitochondrial respiratory chain activity in patient's muscle compared to controls. CONCLUSIONS: This report expands the molecular findings associated with MCMD and confirms the importance of considering CHKB variants in the differential diagnosis of patients presenting with muscular dystrophy and mental retardation. The clinical outcome of MCMD patients seems to be influenced by CHKB molecular defects. Histological and ultrastructural examination of muscle biopsy directed molecular studies and allowed the identification and characterization of an intronic mutation, usually escaping standard molecular testing.


Asunto(s)
Colina Quinasa , Distrofias Musculares , Niño , Colina Quinasa/genética , Colina Quinasa/metabolismo , Creatina Quinasa , Humanos , Masculino , Músculo Esquelético/metabolismo , Distrofias Musculares/congénito , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Mutación , Nucleótidos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA