Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 42(1): 254, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37770957

RESUMEN

BACKGROUND: The upregulation of antioxidant mechanisms is a common occurrence in cancer cells, as they strive to maintain balanced redox state and prevent oxidative damage. This includes the upregulation of the cystine/glutamate antiporter xCT, which plays a crucial role in protecting cancer cells from oxidative stress. Consequently, targeting xCT has become an attractive strategy for cancer treatment. However, xCT is also expressed by several types of immune cells where it has a role in proliferation and effector functions. In light of these observations, a comprehensive understanding of the specific role of xCT in the initiation and progression of cancer, as well as its potential impact on the immune system within the tumor microenvironment and the anti-tumor response, require further investigation. METHODS: We generated xCTnull BALB/c mice to investigate the role of xCT in the immune system and xCTnull/Erbb2-transgenic BALB-neuT mice to study the role of xCT in a mammary cancer-prone model. We also used mammary cancer cells derived from BALB-neuT/xCTnull mice and xCTKO 4T1 cells to test the contribution of xCT to malignant properties in vitro and in vivo. RESULTS: xCT depletion in BALB-neuT/xCTnull mice does not alter autochthonous tumor initiation, but tumor cells isolated from these mice display proliferation and redox balance defects in vitro. Although xCT disruption sensitizes 4T1 cells to oxidative stress, it does not prevent transplantable tumor growth, but reduces cell migration in vitro and lung metastasis in vivo. This is accompanied by an altered immune cell recruitment in the pre-metastatic niche. Finally, systemic depletion of xCT in host mice does not affect transplantable tumor growth and metastasis nor impair the proper mounting of both humoral and cellular immune responses in vivo. CONCLUSIONS: xCT is dispensable for proper immune system function, thus supporting the safety of xCT targeting in oncology. Nevertheless, xCT is involved in several processes required for the metastatic seeding of mammary cancer cells, thus broadening the scope of xCT-targeting approaches.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Neoplasias de la Mama , Ácido Glutámico , Neoplasias , Animales , Ratones , Antioxidantes , Cistina/metabolismo , Ácido Glutámico/metabolismo , Ratones Noqueados , Ratones Transgénicos , Estrés Oxidativo , Neoplasias de la Mama/patología , Sistema de Transporte de Aminoácidos y+/genética
2.
Cells ; 10(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430127

RESUMEN

The cystine/glutamate antiporter xCT is a tumor-associated antigen that has been newly identified in many cancer types. By participating in glutathione biosynthesis, xCT protects cancer cells from oxidative stress conditions and ferroptosis, and contributes to metabolic reprogramming, thus promoting tumor progression and chemoresistance. Moreover, xCT is overexpressed in cancer stem cells. These features render xCT a promising target for cancer therapy, as has been widely reported in the literature and in our work on its immunotargeting. Interestingly, studies on the TP53 gene have revealed that both wild-type and mutant p53 induce the post-transcriptional down modulation of xCT, contributing to ferroptosis. Moreover, APR-246, a small molecule drug that can restore wild-type p53 function in cancer cells, has been described as an indirect modulator of xCT expression in tumors with mutant p53 accumulation, and is thus a promising drug to use in combination with xCT inhibition. This review summarizes the current knowledge of xCT and its regulation by p53, with a focus on the crosstalk of these two molecules in ferroptosis, and also considers some possible combinatorial strategies that can make use of APR-246 treatment in combination with anti-xCT immunotargeting.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida , Mutación/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Animales , Humanos , Proteína p53 Supresora de Tumor/metabolismo
3.
Cancers (Basel) ; 12(6)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521631

RESUMEN

Metastatic breast cancer (MBC) is the leading cause of cancer death in women due to recurrence and resistance to conventional therapies. Thus, MBC represents an important unmet clinical need for new treatments. In this paper we generated a virus-like particle (VLP)-based vaccine (AX09) to inhibit de novo metastasis formation and ultimately prolong the survival of patients with MBC. To this aim, we engineered the bacteriophage MS2 VLP to display an extracellular loop of xCT, a promising therapeutic target involved in tumor progression and metastasis formation. Elevated levels of this protein are observed in a high percentage of invasive mammary ductal tumors including triple negative breast cancer (TNBC) and correlate with poor overall survival. Moreover, xCT expression is restricted to only a few normal cell types. Here, we tested AX09 in several MBC mouse models and showed that it was well-tolerated and elicited a strong antibody response against xCT. This antibody-based response resulted in the inhibition of xCT's function in vitro and reduced metastasis formation in vivo. Thus, AX09 represents a promising novel approach for MBC, and it is currently advancing to clinical development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...