Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38696016

RESUMEN

There is a need for innovative strategies to decrease the mobility of metal(loids) including arsenic (As) and cadmium (Cd) in agricultural soils, including rice paddies, so as to minimize dietary exposure to these toxic elements. Iron (Fe)-modified biochars (FBCs) are used to immobilize As and Cd in soil-water systems, but there is a lack of clarity on optimal methods for preparing FBCs because there are only limited studies that directly compare BCs impregnated with Fe under different conditions. There is also a lack of information on the long-term performance of FBCs in flooded soil environments, where reductive dissolution of Fe (oxy)hydroxide phases loaded onto biochar surfaces may decrease the effectiveness of FBCs. This study uses material characterization methods including FTIR, SEM-EDX, BET, and adsorption isotherm experiments to investigate the effects of Fe-impregnation methods (pH, pyrolysis sequence, and sonication) on the morphology and mineralogy of Fe loaded onto the biochar surface, and to FBC adsorbent properties for arsenate (As(V)), arsenite (As(III)), and Cd. Acidic impregnation conditions favored the adsorption of As(III) onto amorphous Fe phases that were evenly distributed on the biochar surface, including within the biochar pore structure. The combination of sonication with acidic Fe-impregnation conditions led to the best adsorption capacities for As(V) and As(III) (4830 and 11,166 µg As g-1 biochar, respectively). Alkaline Fe-impregnation conditions led to the highest Cd adsorption capacity of 3054 µg Cd g-1 biochar, but had poor effectiveness as an As adsorbent. Amending soil with 5% (w/w) of an acid-impregnated and sonicated FBC was more effective than an alkaline-impregnated FBC or ferrihydrite in decreasing porewater As concentrations. The acid-impregnated FBC also had greater longevity, decreasing As by 54% and 56% in two flooded phases, probably due to the greater stability of Fe(III) within the biochar pore structure that may have a direct chemical bond to the biochar surface. This study demonstrates that FBCs can be designed with selectivity towards different As species or Cd and that they can maintain their effectiveness under anaerobic soil conditions. This is the first study to systematically test how impregnation conditions affect the stability of FBCs in soils under multiple drying-rewetting cycles.

2.
Environ Geochem Health ; 45(11): 8135-8151, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37548848

RESUMEN

Rice is a global dietary staple and its traditional cultivation under flooded soil conditions leads to accumulation of arsenic (As) in rice grains. Alternate wetting and drying (AWD) is a widely advocated water management practice to achieve lower As concentrations in rice, water savings, and decreased methane emissions. It is not yet clear whether AWD leads to tradeoffs between concentrations of As and micronutrient elements (e.g., zinc, manganese, molybdenum) in rice grain. We analyzed pore water chemistry and rice grain composition data from a field experiment conducted in Arkansas, USA, in 2017 and 2018 to test the hypothesis that AWD will have diverging effects on oxyanion-forming (arsenic, molybdenum) vs. cationic (cadmium, zinc, manganese, copper) trace elements. This was hypothesized to occur via decreases in soil pH and/or precipitation of iron oxide minerals during oxidizing conditions under AWD. Solubility of all trace elements, except zinc, increased in more reducing conditions. Consistent with our hypothesis, AWD tended to increase grain concentrations of cationic elements while decreasing grain concentrations of oxyanionic elements. Decreases in total As in rice grains under AWD were mainly driven by changes in dimethylarsinic concentrations, with negligible changes in inorganic As. Linear mixed-effects modeling showed that effects of AWD on grain composition were more significant in 2017 compared to 2018. These differences may be related to the timing of dry-downs in the developmental stage of rice plants, with dry-downs during the heading stage of rice development leading to larger impacts on grain composition of certain elements. We also observed significant interannual variability in grain elemental composition from continuously-flooded fields and postulate the warmer temperatures in 2018 may have played a role in these differences.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Oligoelementos , Suelo/química , Arsénico/análisis , Cadmio/análisis , Oryza/química , Manganeso , Micronutrientes , Molibdeno , Zinc , Agua , Contaminantes del Suelo/análisis
3.
Chemosphere ; 265: 129092, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33303230

RESUMEN

There is growing concern regarding human dietary exposure to arsenic (As) via consumption of rice. The concentration and speciation of As in rice are highly variable, and models describing rice As speciation as a function of environmental covariates remain elusive. We conducted a survey of paddy rice and soil in the Mekong Delta with the objective of linking patterns in rice As content to soil chemical variables or hydrogeological parameters. The sum of As species (ΣAs) in husked rice averaged 243 µg/kg and the average inorganic As (iAs) content was 84%. There was no relationship found between rice As concentration or speciation and As levels in soil. However, mean As concentrations in groundwater near rice sampling locations were strongly correlated with grain ΣAs and iAs over a large part of the study region, despite the fact that groundwater is not commonly used for rice paddy irrigation in this region. We hypothesize that surficial sediments with high concentrations of soluble and plant-available As also serve as sources of arsenic to downgradient shallow aquifers, explaining the observed associations between rice and groundwater As. This study suggests that shallow groundwater As concentrations may serve as a useful indicator for locations at risk of elevated iAs concentrations in rice.


Asunto(s)
Arsénico , Agua Subterránea , Oryza , Contaminantes del Suelo , Contaminantes Químicos del Agua , Arsénico/análisis , Contaminación de Alimentos/análisis , Humanos , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...