Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1021908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993812

RESUMEN

The sirtuins are a family of seven proteins that perform a variety of dermatological functions and help maintain both the structure and function of the skin. More specifically, the sirtuins have been shown to be altered in multiple dermal cell types including dermal fibroblasts. The functions of dermal fibroblasts are extensive, and include playing a significant role in wound healing as well as helping to maintain the integrity of the skin. As dermal fibroblasts age, they can undergo a state of permanent cell cycle arrest, known as cellular senescence. This senescent process can occur as a result of various stressors, including oxidative stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, there has been a growing interest in both enhancing the cutaneous fibroblast's ability to facilitate wound healing and altering fibroblast cellular senescence. Thus, in this review, we examine the relationship between sirtuin signaling and dermal fibroblasts to understand how this family of proteins may modulate skin conditions ranging from the wound healing process to photocarcinogenesis associated with fibroblast senescence. Additionally, we offer supporting data from experiments examining the relationship between fibroblast senescence and sirtuin levels in an oxidative stress model indicating that senescent dermal fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research on the role of sirtuins in specific dermatological disease states that where dermal fibroblast function has been implicated. Finally, we conclude with outlining potential clinical applications of sirtuins in dermatology. In sum, we find that the literature on the involvement of sirtuins in dermal fibroblasts is limited, with research still in its early stages. Nevertheless, intriguing preliminary findings merit additional investigation into the clinical implications of sirtuins in dermatology.

2.
Microbiol Spectr ; 10(6): e0183722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36374040

RESUMEN

We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto Joven , Humanos , Vacunas contra la COVID-19 , Monocitos , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
iScience ; 25(10): 105202, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36168391

RESUMEN

The ongoing evolution of SARS-CoV-2 requires monitoring the capability of immune responses to cross-recognize Variants of Concern (VOC). In this cross-sectional study, we examined serological and cell-mediated immune memory to SARS-CoV-2 variants, including Omicron, among a cohort of 18-21-year-old Marines with a history of either asymptomatic or mild SARS-CoV-2 infection 6 to 14 months earlier. Among the 210 participants in the study, 169 were unvaccinated while 41 received 2 doses of mRNA-based COVID-19 vaccines. Vaccination of previously infected participants strongly boosted neutralizing and binding activity and memory B and T cell responses including the recognition of Omicron, compared to infected but unvaccinated participants. Additionally, no measurable differences were observed in immune memory in healthy young adults with previous symptomatic or asymptomatic infections, for ancestral or variant strains. These results provide mechanistic immunological insights into population-based differences observed in immunity against Omicron and other variants among individuals with different clinical histories.

4.
Nutrients ; 13(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34836359

RESUMEN

Dermal fibroblasts provide structural support by producing collagen and other structural/support proteins beneath the epidermis. Fibroblasts also produce insulin-like growth factor-1 (IGF-1), which binds to the IGF-1 receptors (IGF-1Rs) on keratinocytes to activate signaling pathways that regulate cell proliferation and cellular responses to genotoxic stressors like ultraviolet B radiation. Our group has determined that the lack of IGF-1 expression due to fibroblast senescence in the dermis of geriatric individuals is correlated with an increased incidence of skin cancer. The present studies tested the hypothesis that pro-energetics creatine monohydrate (Cr) and nicotinamide (NAM) can protect normal dermal human fibroblasts (DHF) against experimentally induced senescence. To that end, we used an experimental model of senescence in which primary DHF are treated with hydrogen peroxide (H2O2) in vitro, with senescence measured by staining for beta-galactosidase activity, p21 protein expression, and senescence associated secretory phenotype cytokine mRNA levels. We also determined the effect of H2O2 on IGF-1 mRNA and protein expression. Our studies indicate that pretreatment with Cr or NAM protects DHF from the H2O2-induced cell senescence. Treatment with pro-energetics post-H2O2 had no effect. Moreover, these agents also inhibited reactive oxygen species generation from H2O2 treatment. These studies suggest a potential strategy for protecting fibroblasts in geriatric skin from undergoing stress-induced senescence, which may maintain IGF-1 levels and therefore limit carcinogenesis in epidermal keratinocytes.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Creatina/farmacología , Peróxido de Hidrógeno/efectos adversos , Niacinamida/farmacología , Oxidantes/efectos adversos , Anciano , Dermis/citología , Fibroblastos/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , ARN Mensajero/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Envejecimiento de la Piel/efectos de los fármacos
5.
Arch Dermatol Res ; 312(1): 1-4, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31659432

RESUMEN

Non-melanoma skin cancer primarily affects geriatric patients as evidenced by the fact that only 20% of these cancers are diagnosed in patients under the age of 60 years. Of importance, geriatric skin responds to procarcinogenic ultraviolet B radiation (UVB) in a manner that permits the establishment of tumor cells. Recent studies have indicated that wounding of geriatric skin with fractionated resurfacing lasers and dermabrasion upregulates fibroblast production of insulin-like growth factor-1 (IGF-1) and normalizes the procarcinogenic acute UVB response consisting of basal keratinocytes proliferating while still harboring unrepaired DNA damage. The present studies tested the ability of wounding with a commercially available microneedling device to upregulate IGF-1 levels and normalize the geriatric UVB response. Geriatric volunteers were treated with a microneedling device on buttock skin and 3 months later the IGF-1 levels and UVB responses tested in wounded vs control skin. Wounding via microneedling upregulated IGF-1 and resulted in lower levels of basal keratinocytes proliferating with unrepaired DNA damage. The ability of microneedling to protect against the formation of UVB-damaged proliferating keratinocytes indicates the potential of this wounding modality to reduce aging-associated non-melanoma skin cancer.


Asunto(s)
Envejecimiento , Piel/efectos de la radiación , Rayos Ultravioleta , Anciano , Senescencia Celular , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Queratinocitos/fisiología , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...