Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 59, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165514

RESUMEN

BACKGROUND: The dairy industry has experienced significant economic losses as a result of mastitis, an inflammatory disease of cows, including both subclinical and clinical cases. Milk exosome microRNAs have gained attention due to their stable and selective wrapping nature, offering potential for the prognosis and diagnosis of bovine mastitis, the most common pathological condition of the mammary gland. METHODS AND RESULTS:  In the present investigation, the microRNA profile of milk exosomes was explored using high-throughput small RNA sequencing data in sub-clinical mastitic and healthy crossbred Vrindavani cattle. In both groups, 349 microRNAs were identified, with 238 (68.19%) microRNAs co-expressed; however, 35 and 76 distinct microRNAs were found in subclinical mastitic and healthy cattle, respectively. Differential expression analysis revealed 11 microRNAs upregulated, and 18 microRNAs were downregulated in sub-clinical mastitic cattle. The functional annotation of the target genes of differentially expressed known and novel microRNAs including bta-miR-375, bta-miR-199-5p and bta-miR-12030 reveals their involvement in the regulation of immune response and inflammatory mechanisms and could be involved in development of mastitis. CONCLUSIONS: The analysis of milk exosomal miRNAs cargos hold great promise as an approach to study the underlying molecular mechanisms associated with mastitis in high milk producing dairy cattle. Concurrently, the significantly downregulated miR-375 may upregulate key target genes, including CTLA4, IHH, IRF1, and IL7R. These genes are negative regulators of immune response pathways, which could be associated with impaired inflammatory mechanisms in mammary cells. According to the findings, bta-miR-375 could be a promising biomarker for the development of mastitis in dairy cattle.


Asunto(s)
Exosomas , Mastitis Bovina , MicroARNs , Femenino , Bovinos , Animales , Humanos , Leche , Mastitis Bovina/genética , Exosomas/genética , MicroARNs/genética
2.
Gene ; 893: 147950, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37918549

RESUMEN

In the present study, the genetic diversity measures among four Indian domestic breeds of pig namely Agonda Goan, Ghurrah, Ghungroo, and Nicobari, of different agro-climatic regions of country were explored and compared with European commercial breeds, European wild boar and Chinese domestic breeds. The double digest restriction site-associated DNA sequencing (ddRADseq) data of Indian pigs (102) and Landrace (10 animals) were generated and whole genome sequencing data of exotic pigs (60 animals) from public data repository were used in the study. The principal component analysis (PCA), admixture analysis and phylogenetic analysis revealed that Indian breeds were closer in ancestry to Chinese breeds than European breeds. European breeds exhibited highest genetic diversity measures among all the considered breeds. Among Indian breeds, Agonda Goan and Ghurrah were found to be more genetically diverse than Nicobari and Ghungroo. The selection signature regions in Indian pigs were explored using iHS and XP-EHH, and during iHS analysis, it was observed that genes related to growth, reproduction, health, meat quality, sensory perception and behavior were found to be under selection pressure in Indian pig breeds. Strong selection signatures were recorded in 24.25-25.25 Mb region of SSC18, 123.25-124 Mb region of SSC15 and 118.75-119.5 Mb region of SSC2 in most of the Indian breeds upon pairwise comparison with European commercial breeds using XP-EHH. These regions were harboring some important genes such as EPHA4 for thermotolerance, TAS2R16, FEZF1, CADPS2 and PTPRZ1 for adaptability to scavenging system of rearing, TRIM36 and PGGT1B for disease resistance and CCDC112, PIAS1, FEM1B and ITGA11 for reproduction.


Asunto(s)
Genoma , Genómica , Porcinos , Animales , Filogenia , Análisis de Secuencia de ADN , Variación Genética , Polimorfismo de Nucleótido Simple , Selección Genética
3.
Mol Biol Rep ; 49(8): 8153-8161, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35776394

RESUMEN

In livestock sector, dairy animals alone produce 18% of the total greenhouse gas emissions globally as methane (CH4). This Enteric methane is the largest component of total carbon footprints produced by livestock production system and its reduction is today's new challenge to make livestock farming sustainable for earth's environment. The production of enteric methane in ruminants is a complex phenomena involving different host factors like host genotype, rumen microbiome, host physiology along with dietary factors. Efforts have been made to reduce methane emissions largely through nutritional interventions and dietary supplements, but permanent reductions can be obtained through genetic means by selecting and breeding of low methane emitting animals. From genome-wide association studies, many important genomic QTL regions and single nucleotide polymorphisms involved in shaping the composition of the ruminal microbiome and thus their carbon footprints have been recognised, implying that methane emission traits are quantitative traits. The major bottleneck in implementation of reduced methane emission traits in the breeding programs is wide variation at phenotypic level, lack of precise methane measurements at individual level. Overall, the heritability for CH4 production traits is moderate, and it can be used in breeding programmes to target changes in microbial composition to reduce CH4 emission in the dairy industry for far-reaching environmental benefits at the cost of a minor reduction in genetic gain in production traits.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bovinos/genética , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Ganado/genética , Metano , Microbiota/genética , Rumen , Rumiantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA