Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Structure ; 32(3): 304-315.e5, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38159574

RESUMEN

SETDB1 and SETDB2 mediate trimethylation of histone H3 lysine 9 (H3K9), an epigenetic hallmark of repressive chromatin. They contain a non-canonical methyl-CpG-binding domain (MBD) and bifurcated SET domain, implying interplay between H3K9 trimethylation and DNA methylation in SETDB functions. Here, we report the crystal structure of human SETDB2 MBD bound to the cysteine-rich domain of a zinc-binding protein, C11orf46. SETDB2 MBD comprises the conserved MBD core and a unique N-terminal extension. Although the MBD core has the conserved basic concave surface for DNA binding, it utilizes it for recognition of the cysteine-rich domain of C11orf46. This interaction involves the conserved arginine finger motif and the unique N-terminal extension of SETDB2 MBD, with a contribution from intermolecular ß-sheet formation. Thus, the non-canonical MBD of SETDB1/2 seems to have lost methylated DNA-binding ability but gained a protein-protein interaction surface. Our findings provide insight into the molecular assembly of SETDB-associated repression complexes.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Humanos , Cisteína/metabolismo , ADN/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/química , Factores de Transcripción/metabolismo
2.
ACS Omega ; 7(4): 3212-3221, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128234

RESUMEN

Cytosine methylation is an epigenetic modification essential for formation of mature heterochromatin, gene silencing, and genomic stability. In plants, methylation occurs not only at cytosine bases in CpG but also in CpHpG and CpHpH contexts, where H denotes A, T, or C. Methyl-CpG binding domain (MBD) proteins, which recognize symmetrical methyl-CpG dinucleotides and act as gene repressors in mammalian cells, are also present in plant cells, although their structural and functional properties still remain poorly understood. To fill this gap, in this study, we determined the solution structure of the MBD domain of the MBD6 protein from Arabidopsis thaliana and investigated its binding properties to methylated DNA by binding assays and an in-depth NMR spectroscopic analysis. The AtMBD6 MBD domain folds into a canonical MBD structure in line with its binding specificity toward methyl-CpG and possesses a DNA binding interface similar to mammalian MBD domains. Intriguingly, however, the binding affinity of the AtMBD6 MBD domain toward methyl-CpG-containing DNA was found to be much lower than that of known mammalian MBD domains. The main difference arises from the absence of positively charged residues in AtMBD6 that supposedly interact with the DNA backbone as seen in mammalian MBD/methyl-CpG-containing DNA complexes. Taken together, we have established a structural basis for methyl-CpG recognition by AtMBD6 to develop a deeper understanding how MBD proteins work as mediators of epigenetic signals in plant cells.

3.
Biomol NMR Assign ; 15(2): 427-431, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34286417

RESUMEN

von Willebrand factor (vWF) is an adhesive plasma protein that is important for platelet adhesion in normal hemostasis in response to vascular injury. Although large vWF multimers are released from storage granules of platelets and (sub-)endothelial cells in response to hemostatic stimuli, for normal physiological function, vWF multimers are required to be cleaved into smaller multimeric forms. The plasma metalloproteinase ADAMTS13 specifically cleaves the peptide bond located in the middle of the A2 domain of vWF (vWF-A2), but the cleavage site is buried inside the structure of vWF and is difficult to access in the absence of elevated flow shear stress. On the other hand, in the presence of high vascular shear stress, the structure of vWF-A2 is supposed to be unfolded, thereby becoming accessible for proteolysis by ADAMTS13. However, the atomic-level mechanism underlying shear-induced structural changes of vWF-A2 remains unclear and to date no solution NMR information is available. In this study, we present the backbone 1H, 13C, and 15N resonance assignments of mouse vWF-A2; side chain assignments of 13Cß are also provided. Secondary structure propensity analysis based on the assigned chemical shifts showed that mouse vWF-A2 forms similar secondary structures in solution to the previously determined crystal structure of human vWF-A2. The obtained NMR assignment data will contribute to an atomic-level characterization of shear-induced unfolding of vWF-A2 in solution.


Asunto(s)
Factor de von Willebrand , Animales , Ratones
4.
Biomol NMR Assign ; 13(1): 59-62, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30242623

RESUMEN

Epigenetic regulation is essential to various biological phenomena such as cell differentiation and cancer. DNA methylation is one of the most important epigenetic signals, as it is directly involved in gene silencing of transposable elements, genomic imprinting, and chromosome X inactivation. To mediate these processes, methyl-CpG-binding domain (MBD) proteins recognize specific signals encoded in the form of DNA methylation patterns. AtMBD6, one of the 12 MBD proteins in Arabidopsis thaliana, shares a high sequential homology in the MBD domain with mammalian MBD proteins, but a detailed characterization of its structural and functional properties remains elusive. Here, we report the 1H, 13C, and 15N resonance assignments of the isolated MBD domain of AtMBD6. Analysis of the chemical shift data implied that the MBD domain of AtMBD6 has a secondary structure similar to that of mammalian MeCP2, while the ß-strands ß1 and ß3 of AtMBD6 were found to be longer than those of MeCP2. The structural differences provide insight into the different recognition mechanisms of methylated DNA by plant and mammalian MBDs. The assignments reported here will aid further analyses such as titration experiments and three-dimensional structure determination using NMR to yield a detailed characterization of the interaction between AtMBD6 and methylated DNAs.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Unión al ADN/química , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...