Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(6)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516887

RESUMEN

Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.


Asunto(s)
Proteína HMGA2 , Síndrome de Silver-Russell , Animales , Humanos , Ratones , Secuencia de Bases , Trastornos del Crecimiento/genética , Proteína HMGA2/genética , Fenotipo , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico
2.
Eur J Endocrinol ; 188(4): 353-365, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36943306

RESUMEN

OBJECTIVE: Growth hormone insensitivity (GHI) encompasses growth restriction, normal/elevated growth hormone (GH), and low insulin-like growth factor I (IGF1). "Nonclassical" GHI is poorly characterized and is rarely caused by heterozygous dominant-negative (DN) variants located in the intracellular or transmembrane domains of the GH receptor (GHR). We sought to determine the molecular mechanisms underpinning the growth restriction in 2 GHI cases. METHODS AND DESIGN: A custom-made genetic investigative pipeline was exploited to identify the genetic cause of growth restriction in patients with GHI. Nanoluc binary technology (NanoBiT), in vitro splicing assays, western blotting, and flow cytometry, characterized the novel GHR variants. RESULTS: Novel heterozygous GHR variants were identified in 2 unrelated patients with GHI. In vitro splicing assays indicated both variants activated the same alternative splice acceptor site resulting in aberrant splicing and exclusion of 26 base pairs of GHR exon 9. The GHR variants produced truncated receptors and impaired GH-induced GHR signaling. NanoBiT complementation and flow cytometry showed increased cell surface expression of variant GHR homo/heterodimers compared to wild-type (WT) homodimers and increased recombinant human GH binding to variant GHR homo/heterodimers and GH binding protein (GHBP) cleaved from the variant GHRs. The findings demonstrated increased variant GHR dimers and GHBP with resultant GH sequestration. CONCLUSION: We identified and characterized 2 novel, naturally occurring truncated GHR gene variants. Intriguingly, these DN GHR variants act via the same cryptic splice acceptor site, highlighting impairing GH binding to excess GHBP as a potential therapeutic approach.


Asunto(s)
Enanismo , Hormona de Crecimiento Humana , Humanos , Hormona del Crecimiento/genética , Receptores de Somatotropina/genética , Sitios de Empalme de ARN , Hormona de Crecimiento Humana/metabolismo , Enanismo/genética , Factor I del Crecimiento Similar a la Insulina/genética
3.
Eur J Endocrinol ; 188(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36651165

RESUMEN

OBJECTIVE: Adrenocortical carcinomas (ACCs) are invasive tumours arising in the adrenal cortex, and steroidogenic tumours are associated with worse prognostic outcomes. Loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1) cause primary adrenal insufficiency and as a key degradative enzyme in the sphingolipid pathway, SGPL1 also influences the balance of pro-proliferative and pro-apoptotic sphingolipids. We, therefore, hypothesized increased SGPL1 may be linked to increased disease severity in ACC. DESIGN: Analyse SGPL1 expression impact on patient survival and adrenal cancer cell phenotype. We analysed two ACC cohorts with survival and corresponding transcriptomic data, focusing on SGPL1 and sphingolipid pathway genes. In vitro, we generated SGPL1-knockout and overexpressing H295R adrenocortical cells to investigate the role of SGPL1 in cell signalling in ACCs. RESULTS: We found increased expression of several sphingolipid pathway receptors and enzymes, most notably SGPL1 correlated with reduced patient survival in both cohorts. Overexpression of SGPL1 in the H295R cell line increased proliferation and migration while reducing apoptosis, while SGPL1 knockout had the opposite effect. RNA-seq revealed a global increase in the expression of genes in the electron transport chain in overexpressing cells, correlating with increased aerobic respiration and glycolysis. Furthermore, the opposite phenotype was seen in cells lacking SGPL1. We subsequently found the increased proliferation is linked to metabolic substrate availability and increased capacity to use different fuel sources, but particularly glucose, in overexpressing cells. CONCLUSIONS: We, therefore, propose that SGPL1-overexpressing ACC tumours reduce patient survival by increasing fuel usage for anabolism and energy production to facilitate growth and invasion.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Humanos , Carcinoma Corticosuprarrenal/genética , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Esfingolípidos , Neoplasias de la Corteza Suprarrenal/genética
4.
Front Endocrinol (Lausanne) ; 14: 1268345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38189052

RESUMEN

Familial Glucocorticoid Deficiency encompasses a broad spectrum of monogenic recessive disorders that theoretically solely abrogate cortisol biosynthesis. In reality, delineating clear genotype-phenotype correlations in this disorder is made complicated by marked phenotypic heterogeneity even within kindreds harbouring identical variants. Phenotypes range from isolated glucocorticoid insufficiency to cortisol deficiency plus a variety of superimposed features including salt-wasting and hypoaldosteronism, primary hypothyroidism, hypogonadism and growth defects. Furthermore, mutation type, domain topology and perceived enzyme activity do not always predict disease severity. Given the high burden of disease and implications of a positive diagnosis, genetic testing is crucial in the management of patients warranting detailed delineation of genomic variants including viable functional studies.


Asunto(s)
Enfermedad de Addison , Síndrome de Resistencia a Hormonas Tiroideas , Tirotoxicosis , Humanos , Glucocorticoides , Hidrocortisona
5.
Endocr Connect ; 11(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35904228

RESUMEN

Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is an autosomal recessive multi-system disorder, which mainly incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency. Other variable endocrine manifestations are described. In this study, we aimed to comprehensively annotate the endocrinopathies associated with pathogenic SGPL1 variants and assess for genotype-phenotype correlations by retrospectively reviewing the reports of endocrine disease within our patient cohort and all published cases in the wider literature up to February 2022. Glucocorticoid insufficiency in early childhood is the most common endocrine manifestation affecting 64% of the 50 patients reported with SPLIS, and a third of these individuals have additional mineralocorticoid deficiency. While most individuals also have nephrotic syndrome, SGPL1 variants also account for isolated adrenal insufficiency at presentation. Primary gonadal insufficiency, manifesting with microphallus and cryptorchidism, is reported in less than one-third of affected boys, all with concomitant adrenal disease. Mild primary hypothyroidism affects approximately a third of patients. There is paucity of data on the impact of SGPL1 deficiency on growth, and pubertal development, limited by the early and high mortality rate (approximately 50%). There is no clear genotype-phenotype correlation overall in the syndrome, with variable disease penetrance within individual kindreds. However, with regards to endocrine phenotype, the most prevalent disease variant p.R222Q (affecting 22%) is most consistently associated with isolated glucocorticoid deficiency. To conclude, SPLIS is associated with significant multiple endocrine disorders. While endocrinopathy in the syndrome generally presents in infancy, late-onset disease also occurs. Screening for these is therefore warranted both at diagnosis and through follow-up.

6.
Front Endocrinol (Lausanne) ; 13: 860055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418949

RESUMEN

An eight-year old South Asian boy presenting with progressive hyperpigmentation was found to have primary adrenal insufficiency (PAI) in the form of isolated glucocorticoid deficiency. Follow up of this boy for nine years, until the age of 17 years showed normal pubertal onset and progression. Molecular evaluation, by targeted next generation sequencing of candidate genes linked to PAI revealed changes in two genes that are intricately linked in the early stages of steroid biosynthesis: compound heterozygous variants in STAR, c.465+1G>A and p.(E99K), plus a heterozygous rs6161 change in CYP11A1. No variants in other known causal genes were detected. The proband's mother was heterozygous for the c.465+1G>A STAR and rs6161 CYP11A1 variants, while the father was homozygous for the p.(E99K) alteration in STAR but wild-type for CYP11A1. Both parents had normal adrenal cortical function as revealed by short Synacthen tests. The STAR variant c.465+1G>A will lead to abnormal splicing of exon 4 in mRNA and the addition of the p.(E99K) variant, predicted damaging by SIFT and CADD, may be sufficient to cause PAI but this is by no means certain given that the unaffected father is homozygous for the latter change. The rs6161 CYP11A1 variant [c.940G>A, p.(E314K)] has recently been demonstrated to cause PAI in conjunction with a severe rare disruptive change on the other allele, however sequencing of the coding region of CYP11A1 revealed no further changes in this subject. We wondered whether the phenotype of isolated glucocorticoid deficiency had arisen in this child due to tri-allelic inheritance of a heterozygous CYP11A1 change along with the two STAR variants each of which contribute a partial loss-of-function burden that, when combined, is sufficient to cause PAI or if the loss-of-function c.465+1G>A combined with the presumed partial loss-of-function p.(E99K) in STAR could be causative.


Asunto(s)
Enfermedad de Addison , Insuficiencia Suprarrenal , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Fosfoproteínas , Enfermedad de Addison/genética , Adolescente , Insuficiencia Suprarrenal/genética , Alelos , Niño , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Glucocorticoides , Humanos , Masculino , Fosfoproteínas/genética
7.
J Endocr Soc ; 6(5): bvac020, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35308304

RESUMEN

Introduction: Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is a multisystemic disorder which, in the main, incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency (PAI). Case Presentation: We present a young girl with a novel homozygous variant in SGPL1, p.D350G, with PAI in the absence of nephrotic syndrome. In the course of 15 years of follow-up she has further developed primary hypothyroidism and while she has progressed through puberty appropriately, ovarian calcifications were noted on imaging. The p.D350G variant results in reduced protein expression of SGPL1. We demonstrate that CRISPR engineered knockout of SGPL1 in human adrenocortical (H295R) cells abrogates cortisol production. Furthermore, while wild-type SGPL1 is able to rescue cortisol production in this in vitro model of adrenal disease, this is not observed with the p.D350G mutant. Conclusion: SGPL1 deficiency should be considered in the differential diagnosis of PAI with close attention paid to evolving disease on follow-up.

8.
Artículo en Inglés | MEDLINE | ID: mdl-34564059

RESUMEN

SUMMARY: Congenital isolated ACTH deficiency (IAD) is a rare condition characterised by low plasma ACTH and serum cortisol with normal production of other pituitary hormones. TBX19 (also known as TPIT) is a T-box pituitary restricted transcription factor important for POMC gene transcription and terminal differentiation of POMC-expressing cells. TBX19 gene mutations have been shown to cause neonatal-onset congenital IAD. We report a neonate of Romanian origin, who presented at 15 h of life with respiratory arrest and hypoglycaemia which recurred over the following 2 weeks. Biochemical investigations revealed IAD, with undetectable serum cortisol (cortisol < 1 µg/dL; normal range (NR): 7.8-26.2) and plasma ACTH levels within the normal range (22.1 pg/mL; NR: 4.7-48.8). He responded to hydrocortisone treatment. Patient DNA was analysed by a HaloPlex next-generation sequencing array targeting genes for adrenal insufficiency. A novel homozygous synonymous mutation p.Thr96= (Chr1:168260482; c.288G>A; rs376493164; allele frequency 1 × 10-5, no homozygous) was found in exon 2 of the TBX19 gene. The effect of this was assessed by an in vitro splicing assay, which revealed aberrant splicing of exon 2 giving rise to a mutant mRNA transcript whereas the WT vector spliced exon 2 normally. This was identified as the likely cause of IAD in the patient. The predicted protein product would be non-functional in keeping with the complete loss of cortisol production and early presentation in the patient. LEARNING POINTS: Synonymous variants (a nucleotide change that does not alter protein sequence) usually thought to be benign may still have detrimental effects on RNA and protein function causing disease. Hence, they should not be ignored, especially if very rare in public databases. In vitro splicing assays can be employed to characterise the consequence of intronic and exonic nucleotide gene changes that may alter splicing. Establishing a diagnosis due to a TBX19 mutation is important as it defines a condition of isolated ACTH deficiency not associated with additional pituitary deficiencies.

9.
Artículo en Inglés | MEDLINE | ID: mdl-34453441

RESUMEN

CONTEXT: Severe forms of growth hormone insensitivity (GHI) are characterized by extreme short stature, dysmorphism, and metabolic anomalies. OBJECTIVE: This work aims to identify the genetic cause of growth failure in 3 "classical" GHI individuals. METHODS: A novel intronic growth hormone receptor gene (GHR) variant was identified, and in vitro splicing assays confirmed aberrant splicing. A 6Ω pseudoexon GHR vector and patient fibroblast analysis assessed the consequences of the novel pseudoexon inclusion and the impact on GHR function. RESULTS: We identified a novel homozygous intronic GHR variant (g.5:42700940T > G, c.618+836T > G), 44 bp downstream of the previously recognized intronic 6Ψ GHR pseudoexon mutation in the index patient. Two siblings also harbored the novel intronic 6Ω pseudoexon GHR variant in compound heterozygosity with the known GHR c.181C > T (R43X) mutation. In vitro splicing analysis confirmed inclusion of a 151-bp mutant 6Ω pseudoexon not identified in wild-type constructs. Inclusion of the 6Ω pseudoexon causes a frameshift resulting in a nonfunctional truncated GHR lacking the transmembrane and intracellular domains. The truncated 6Ω pseudoexon protein demonstrated extracellular accumulation and diminished activation of STAT5B signaling following GH stimulation. CONCLUSION: Novel GHR 6Ω pseudoexon inclusion results in loss of GHR function consistent with a severe GHI phenotype. This represents a novel mechanism of Laron syndrome and is the first deep intronic variant identified causing severe postnatal growth failure. The 2 kindreds originate from the same town in Campania, Southern Italy, implying common ancestry. Our findings highlight the importance of studying variation in deep intronic regions as a cause of monogenic disorders.

10.
J Endocr Soc ; 5(8): bvab086, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258490

RESUMEN

CONTEXT: Although primary adrenal insufficiency (PAI) in children and young people is often due to congenital adrenal hyperplasia (CAH) or autoimmunity, other genetic causes occur. The relative prevalence of these conditions is poorly understood. OBJECTIVE: We investigated genetic causes of PAI in children and young people over a 25 year period. DESIGN SETTING AND PARTICIPANTS: Unpublished and published data were reviewed for 155 young people in the United Kingdom who underwent genetic analysis for PAI of unknown etiology in three major research centers between 1993 and 2018. We pre-excluded those with CAH, autoimmune, or metabolic causes. We obtained additional data from NR0B1 (DAX-1) clinical testing centers. INTERVENTION AND OUTCOME MEASUREMENTS: Genetic analysis involved a candidate gene approach (1993 onward) or next generation sequencing (NGS; targeted panels, exomes) (2013-2018). RESULTS: A genetic diagnosis was reached in 103/155 (66.5%) individuals. In 5 children the adrenal insufficiency resolved and no genetic cause was found. Pathogenic variants occurred in 11 genes: MC2R (adrenocorticotropin receptor; 30/155, 19.4%), NR0B1 (DAX-1; 7.7%), CYP11A1 (7.7%), AAAS (7.1%), NNT (6.5%), MRAP (4.5%), TXNRD2 (4.5%), STAR (3.9%), SAMD9 (3.2%), CDKN1C (1.3%), and NR5A1/steroidogenic factor-1 (SF-1; 0.6%). Additionally, 51 boys had NR0B1 variants identified through clinical testing. Although age at presentation, treatment, ancestral background, and birthweight can provide diagnostic clues, genetic testing was often needed to define the cause. CONCLUSIONS: PAI in children and young people often has a genetic basis. Establishing the specific etiology can influence management of this lifelong condition. NGS approaches improve the diagnostic yield when many potential candidate genes are involved.

11.
Artículo en Inglés | MEDLINE | ID: mdl-34318893

RESUMEN

CONTEXT: Severe forms of Growth Hormone Insensitivity (GHI) are characterized by extreme short stature, dysmorphism and metabolic anomalies. OBJECTIVE: Identification of the genetic cause of growth failure in 3 'classical' GHI subjects. DESIGN: A novel intronic GHR variant was identified, and in vitro splicing assays confirmed aberrant splicing. A 6Ω pseudoexon GHR vector and patient fibroblast analysis assessed the consequences of the novel pseudoexon inclusion and the impact on GHR function. RESULTS: We identified a novel homozygous intronic GHR variant (g.5:42700940T>G, c.618 + 836T> G), 44bp downstream of the previously recognized intronic 6Ψ GHR pseudoexon mutation in the index patient. Two siblings also harbored the novel intronic 6Ω pseudoexon GHR variant in compound heterozygosity with the known GHR c.181C>T (R43X) mutation. In vitro splicing analysis confirmed inclusion of a 151bp mutant 6Ω pseudoexon not identified in wild-type constructs. Inclusion of the 6Ω pseudoexon causes a frameshift resulting in a non-functional truncated GHR lacking the transmembrane and intracellular domains. The truncated 6Ω pseudoexon protein demonstrated extracellular accumulation and diminished activation of STAT5B signaling following growth hormone stimulation. CONCLUSION: Novel GHR 6Ω pseudoexon inclusion results in loss of GHR function consistent with a severe GHI phenotype. This represents a novel mechanism of Laron syndrome and is the first deep intronic variant identified causing severe postnatal growth failure. The 2 kindreds originate from the same town in Campania, Southern Italy, implying common ancestry. Our findings highlight the importance of studying variation in deep intronic regions as a cause of monogenic disorders.

12.
J Clin Endocrinol Metab ; 106(11): e4716-e4733, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34136918

RESUMEN

CONTEXT: Growth hormone insensitivity (GHI) in children is characterized by short stature, functional insulin-like growth factor (IGF)-I deficiency, and normal or elevated serum growth hormone (GH) concentrations. The clinical and genetic etiology of GHI is expanding. OBJECTIVE: We undertook genetic characterization of short stature patients referred with suspected GHI and features which overlapped with known GH-IGF-I axis defects. METHODS: Between 2008 and 2020, our center received 149 GHI referrals for genetic testing. Genetic analysis utilized a combination of candidate gene sequencing, whole exome sequencing, array comparative genomic hybridization, and a targeted whole genome short stature gene panel. RESULTS: Genetic diagnoses were identified in 80/149 subjects (54%) with 45/80 (56%) having known GH-IGF-I axis defects (GHR n = 40, IGFALS n = 4, IGFIR n = 1). The remaining 35/80 (44%) had diagnoses of 3M syndrome (n = 10) (OBSL1 n = 7, CUL7 n = 2, and CCDC8 n = 1), Noonan syndrome (n = 4) (PTPN11 n = 2, SOS1 n = 1, and SOS2 n = 1), Silver-Russell syndrome (n = 2) (loss of methylation on chromosome 11p15 and uniparental disomy for chromosome 7), Class 3-5 copy number variations (n = 10), and disorders not previously associated with GHI (n = 9) (Barth syndrome, autoimmune lymphoproliferative syndrome, microcephalic osteodysplastic primordial dwarfism type II, achondroplasia, glycogen storage disease type IXb, lysinuric protein intolerance, multiminicore disease, macrocephaly, alopecia, cutis laxa, and scoliosis syndrome, and Bloom syndrome). CONCLUSION: We report the wide range of diagnoses in 149 patients referred with suspected GHI, which emphasizes the need to recognize GHI as a spectrum of clinical entities in undiagnosed short stature patients. Detailed clinical and genetic assessment may identify a diagnosis and inform clinical management.


Asunto(s)
Biomarcadores/análisis , Estatura , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Trastornos del Crecimiento/patología , Síndrome de Laron/patología , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Pruebas Genéticas , Trastornos del Crecimiento/complicaciones , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Hormona de Crecimiento Humana/metabolismo , Humanos , Lactante , Factor I del Crecimiento Similar a la Insulina/metabolismo , Síndrome de Laron/complicaciones , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Masculino , Pronóstico , Adulto Joven
13.
Front Pediatr ; 8: 151, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322566

RESUMEN

Background: Loss of function mutations in SGPL1 are associated with Sphingosine-1-phosphate lyase insufficiency syndrome, comprising steroid resistant nephrotic syndrome, and primary adrenal insufficiency (PAI) in the majority of cases. SGPL1 encodes sphingosine-1-phosphate lyase (SGPL1) which is a major modulator of sphingolipid signaling. Case Presentation: A Pakistani male infant presented at 5 months of age with failure to thrive, nephrotic syndrome, primary adrenal insufficiency, hypothyroidism, and hypogonadism. Other systemic manifestations included persistent lymphopenia, ichthyosis, and motor developmental delay. Aged 9 months, he progressed rapidly into end stage oligo-anuric renal failure and subsequently died. Sanger sequencing of the entire coding region of SGPL1 revealed the novel association of a rare homozygous mutation (chr10:72619152, c.511A>G, p.N171D; MAF-1.701e-05) with the condition. Protein expression of the p.N171D mutant was markedly reduced compared to SGPL1 wild type when overexpressed in an SGPL1 knockout cell line, and associated with a severe clinical phenotype. Conclusions: The case further highlights the emerging phenotype of patients with loss-of-function SGPL1 mutations. Whilst nephrotic syndrome is a recognized feature of other disorders of sphingolipid metabolism, sphingosine-1-phosphate lyase insufficiency syndrome is unique amongst the sphingolipidoses in presenting with multiple endocrinopathies. Given the multi-systemic and progressive nature of this form of PAI/ nephrotic syndrome, a genetic diagnosis is crucial for optimal management and appropriate screening for comorbidities in these patients.

14.
Life Sci Alliance ; 3(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32213617

RESUMEN

The C57BL/6J and C57BL/6N mice have well-documented phenotypic and genotypic differences, including the infamous nicotinamide nucleotide transhydrogenase (Nnt) null mutation in the C57BL/6J substrain, which has been linked to cardiovascular traits in mice and cardiomyopathy in humans. To assess whether Nnt loss alone causes a cardiovascular phenotype, we investigated the C57BL/6N, C57BL/6J mice and a C57BL/6J-BAC transgenic rescuing NNT expression, at 3, 12, and 18 mo. We identified a modest dilated cardiomyopathy in the C57BL/6N mice, absent in the two B6J substrains. Immunofluorescent staining of cardiomyocytes revealed eccentric hypertrophy in these mice, with defects in sarcomere organisation. RNAseq analysis identified differential expression of a number of cardiac remodelling genes commonly associated with cardiac disease segregating with the phenotype. Variant calling from RNAseq data identified a myosin light chain kinase 3 (Mylk3) mutation in C57BL/6N mice, which abolishes MYLK3 protein expression. These results indicate the C57BL/6J Nnt-null mice do not develop cardiomyopathy; however, we identified a null mutation in Mylk3 as a credible cause of the cardiomyopathy phenotype in the C57BL/6N.


Asunto(s)
Cardiomiopatías/genética , Quinasa de Cadena Ligera de Miosina/genética , NADP Transhidrogenasa AB-Específica/genética , Animales , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL/genética , Ratones Transgénicos/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , NADP Transhidrogenasa AB-Específica/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Fenotipo
15.
J Steroid Biochem Mol Biol ; 189: 73-80, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30817990

RESUMEN

Hereditary adrenocorticotropin (ACTH) resistance syndromes encompass the genetically heterogeneous isolated or Familial Glucocorticoid Deficiency (FGD) and the distinct clinical entity known as Triple A syndrome. The molecular basis of adrenal resistance to ACTH includes defects in ligand binding, MC2R/MRAP receptor trafficking, cellular redox balance, cholesterol synthesis and sphingolipid metabolism. Biochemically, this manifests as ACTH excess in the setting of hypocortisolaemia. Triple A syndrome is an inherited condition involving a tetrad of adrenal insufficiency, achalasia, alacrima and neuropathy. FGD is an autosomal recessive condition characterized by the presence of isolated glucocorticoid deficiency, classically in the setting of preserved mineralocorticoid secretion. Primarily there are three established subtypes of the disease: FGD 1, FGD2 and FGD3 corresponding to mutations in the Melanocortin 2 receptor MC2R (25%), Melanocortin 2 receptor accessory protein MRAP (20%), and Steroidogenic acute regulatory protein STAR (5-10%) respectively. Together, mutations in these 3 genes account for approximately half of cases. Whole exome sequencing in patients negative for MC2R, MRAP and STAR mutations, identified mutations in minichromosome maintenance 4 MCM4, nicotinamide nucleotide transhydrogenase NNT, thioredoxin reductase 2 TXNRD2, cytochrome p450scc CYP11A1, and sphingosine 1-phosphate lyase SGPL1 accounting for a further 10% of FGD. These novel genes have linked replicative and oxidative stress and altered redox potential as a mechanism of adrenocortical damage. However, a genetic diagnosis is still unclear in about 40% of cases. We describe here an updated list of FGD genes and provide a description of relevant mouse models that, despite some being flawed, have been precious allies in the understanding of FGD pathobiology.


Asunto(s)
Insuficiencia Suprarrenal/genética , Acalasia del Esófago/genética , Glucocorticoides/genética , Errores Congénitos del Metabolismo Esteroideo/genética , Insuficiencia Suprarrenal/metabolismo , Insuficiencia Suprarrenal/patología , Hormona Adrenocorticotrópica/genética , Hormona Adrenocorticotrópica/metabolismo , Animales , Modelos Animales de Enfermedad , Acalasia del Esófago/metabolismo , Acalasia del Esófago/patología , Predisposición Genética a la Enfermedad , Glucocorticoides/metabolismo , Humanos , Mutación , Errores Congénitos del Metabolismo Esteroideo/metabolismo , Errores Congénitos del Metabolismo Esteroideo/patología
16.
J Endocr Soc ; 3(1): 201-221, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30620006

RESUMEN

Primary adrenal insufficiency (PAI) is a potentially life-threatening condition that can present with nonspecific features and can be difficult to diagnose. We undertook next generation sequencing in a cohort of children and young adults with PAI of unknown etiology from around the world and identified a heterozygous missense variant (rs6161, c.940G>A, p.Glu314Lys) in CYP11A1 in 19 individuals from 13 different families (allele frequency within undiagnosed PAI in our cohort, 0.102 vs 0.0026 in the Genome Aggregation Database; P < 0.0001). Seventeen individuals harbored a second heterozygous rare disruptive variant in CYP11A1 and two had very rare synonymous changes in trans (c.990G>A, Thr330 = ; c.1173C>T, Ser391 =). Although p.Glu314Lys is predicted to be benign and showed no loss-of-function in an Escherichia coli assay system, in silico and in vitro studies revealed that the rs6161/c.940G>A variant, plus the c.990G>A and c.1173C>T changes, affected splicing and that p.Glu314Lys produces a nonfunctional protein in mammalian cells. Taken together, these findings show that compound heterozygosity involving a relatively common and predicted "benign" variant in CYP11A1 is a major contributor to PAI of unknown etiology, especially in European populations. These observations have implications for personalized management and demonstrate how variants that might be overlooked in standard analyses can be pathogenic when combined with other very rare disruptive changes.

17.
J Clin Invest ; 127(3): 942-953, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28165343

RESUMEN

Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/- mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/- mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism.


Asunto(s)
Insuficiencia Suprarrenal/congénito , Aldehído-Liasas/genética , Homocigoto , Mutación INDEL , Mutación Missense , Síndrome Nefrótico/genética , Glándulas Suprarrenales/enzimología , Glándulas Suprarrenales/patología , Insuficiencia Suprarrenal/enzimología , Insuficiencia Suprarrenal/genética , Insuficiencia Suprarrenal/patología , Aldehído-Liasas/metabolismo , Animales , Células HEK293 , Humanos , Riñón/enzimología , Riñón/patología , Ratones , Ratones Noqueados , Síndrome Nefrótico/enzimología , Síndrome Nefrótico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...