Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biomed Pharmacother ; 160: 114315, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36716661

RESUMEN

Gastric ulcer (GU) is one of the most prevalent digestive system diseases in humans, and it has been linked to inflammation. Previous studies have demonstrated the anti-inflammatory potential of isoalantolactone (IAL), a sesquiterpene lactone isolated from Radix Inulae. However, the pharmacological effects of IAL on GU and its mechanism of action are still unclear. Hence, the present study is aimed to investigate the anti-inflammatory potential of IAL on GU. Firstly, we assessed the effect of IAL on ethanol-induced injury of human gastric epithelial cells and the levels of inflammatory cytokines in cell culture supernatants. Then, the anti-inflammatory effects of IAL were confirmed in vivo using zebrafish inflammation models. Furthermore, the mechanism of IAL against GU was preliminarily discussed through network pharmacology and molecular docking studies. Quantitative real-time PCR assays were also used to confirm the mechanism of IAL action. ALB, EGFR, SRC, HSP90AA1, and CASP3 were found for the first time as the key targets of the IAL anti-GU. PI3K-Akt signaling pathway and Th17 cell differentiation were identified to play a crucial role in the anti-GU effects of IAL. In conclusion, we found that IAL has anti-inflammatory effects both in vitro and in vivo, and showed potential protective effects against ethanol-induced GU.


Asunto(s)
Sesquiterpenos , Úlcera Gástrica , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Etanol/farmacología , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Transducción de Señal , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Antiinflamatorios/uso terapéutico
2.
Sci Total Environ ; 857(Pt 2): 159425, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36244480

RESUMEN

Difenoconazole is widely used to protect crops, fruits, and vegetables. However, this fungicide can enter aquatic environments and cause harmful effects to non-target organisms and induce little-known biological disorders. Thus, aiming to expand our knowledge about the ecotoxicity of difenoconazole on freshwater ichthyofauna, we aimed to determine the median lethal concentration (LC50) of difenoconazole and evaluate its possible impacts from different toxicity biomarkers, using freshwater fish Labeo rohita as a model system. Using the probit analysis method, the 96 h LC50 value of difenoconazole in the fish was calculated as 4.5 mg L-1. Posteriorly, fish were exposed to two sublethal concentrations (0.45 mg L-1 1/10th and 0.9 mg L-1 1/5th LC50 value) for 21 days. A significant reduction of superoxide dismutase (SOD) and catalase (CAT) activity was noted in the gill, liver, and kidneys of fish compared to the control groups. The level of glutathione-S-transferase (GST) and lipid peroxidation (LPO) activity was higher in all vital tissues of difenoconazole-treated fish. Histological alterations in the gill include epithelial lifting, lamellar fusion, hypertrophy, and epithelial necrosis. At the same time, the liver showed pyknotic nucleus, vacuolation, cellular edema and tubular necrosis, shrinkage of glomeruli, vacuolation, and pyknotic nuclei in the kidney. DNA damage was increased significantly with tail formation based on the concentration and time-dependent manner. Therefore, our study confirms that the exposure of L. rohita to difenoconazole induces negative biological consequences and sheds light on the danger of this fungicide for freshwater fish species. We believe that studies like ours can support actions and strategies for the remediation/mitigation of aquatic pollution by difenoconazole and for the conservation of freshwater ichthyofauna.


Asunto(s)
Cyprinidae , Fungicidas Industriales , Contaminantes Químicos del Agua , Animales , Fungicidas Industriales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Cyprinidae/genética , Agua Dulce , Antioxidantes , Necrosis
3.
Chinese Herbal Medicines ; (4): 222-230, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-982506

RESUMEN

Kunxian Capsule (KX) is a popular Chinese patent medicine for the treatment of rheumatoid arthritis, nephrotic syndrome, systemic lupus erythematosus, Henoch-Schönlein purpura, ankylosing spondylitis, psoriatic arthritis and eczema. However, there is scarcity of comprehensive information on the significance of KX in the clinical application and its side effects. Hence, it is aimed to provide a review of the significance of KX, with a focus on the pharmacological effects, clinical applications, and its adverse reactions. This review was based on the published literatures in PubMed, China National Knowledge Infrastructure and WanFang database. The articles were collected by two independent authors with no time limits applied until November 30, 2022. The search term includes Kunxian Capsule and/or clinical effect, pharmacology, disease, therapy, adverse effects and quality control. KX has been shown to be effective in the treatment of autoimmune arthritis by inhibiting inflammatory responses and inducing apoptosis. Many studies suggest that KX has anti-inflammatory and analgesic properties that aid in the improvement of joint functions. KX dispels wind, removes dampness, invigorates the kidneys, and promotes blood circulation, thereby curing various diseases. However, studies also suggest KX-related adverse reactions in multiple systems. Overall, this review highlights the scientific basis of KX in curing or preventing various diseases and provides novel insights for further research and clinical applications.

4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-971340

RESUMEN

OBJECTIVE@#To investigate the anti-angiogenic activity of Kunxian Capsule (KX) extract and explore the underlying molecular mechanism using zebrafish.@*METHODS@#The KX extract was prepared with 5.0 g in 100 mL of 40% methanol followed by ultrasonication and freeze drying. Freeze dried KX extract of 10.00 mg was used as test stock solution. Triptolide and icariin, the key bioactive compounds of KX were analyzed using ultra-high performance liquid chromatography. The transgenic zebrafish Tg(flk1:GFP) embryos were dechorionated at 20-h post fertilization (hpf) and treated with PTK 787, and 3.5, 7, 14 and 21 µg/mL of KX extract, respectively. After 24-h post exposure (hpe), mortality and malformation (%), intersegmental vessels (ISV) formation, and mRNA expression level of angiogenic pathway genes including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) were determined. Further, the embryos at 72 hpf were treated with KX extract to observe the development of sub-intestinal vein (SIV) after 24 hpe.@*RESULTS@#The chromatographic analysis of test stock solution of KX extract showed that triptolide and icariin was found as 0.089 mg/g and 48.74 mg/g, respectively, which met the requirements of the national drug standards. In zebrafish larvae experiment, KX extract significantly inhibited the ISV (P<0.01) and SIV formation (P<0.05). Besides, the mRNA expression analysis showed that KX extract could significantly suppress the expressions of PI3K and AKT, thereby inhibiting the mRNA levels of ERKs and MAPK. Moreover, the downstream signaling cascade affected the expression of VEGF and its receptors (VEGFR and VEGFR-2). FGF-2, a strong angiogenic factor, was also down-regulated by KX treatment in zebrafish larvae.@*CONCLUSION@#KX extract exhibited anti-angiogenic effects in zebrafish embryos by regulating PI3K/AKT-MAPK-VEGF pathway and showed promising potential for RA treatment.


Asunto(s)
Animales , Factor 2 de Crecimiento de Fibroblastos , Células Endoteliales de la Vena Umbilical Humana , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
5.
Sci Total Environ ; 826: 154046, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35217044

RESUMEN

In recent decades, the ecotoxicological potential of organic ultraviolet filters (OU-VFs) has received growing attention. However, the toxicity of its photoproducts or transformation products on freshwater vertebrates has been little explored. Therefore, the aim of the present study is to evaluate the possible adverse effects of ethylhexyl methoxycinnamate (EHMC) and its photoproducts [2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA)] on the expression of stress-responsive and antioxidant genes. For this, zebrafish (Danio rerio) adults were exposed to pollutants at an environmentally relevant concentration (3 µg/L) and evaluated after 7, 14, and 21 days of exposure. The results of the principal component analysis (PCA) and two-way repeated measures (RM) ANOVA revealed that EHMC, 2-EH, and 4-MBA exposure caused significant downregulation of the genes hsp70, nrf2, cyp1a, ahr, sod1, sod2, cat, gstp1, gpx1a, gss, and gsr (on all trial days) in the liver of the animals. On the other hand, taken together, our data did not show significant differences between the effects induced by EHMC and its photoproducts. The genes evaluated in the present study play a major role in regulating the defensive antioxidant response against EHMC and its photoproducts. Additionally, our study provides an insight into the mechanisms of those OU-VFs in freshwater fish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Antioxidantes , Cinamatos , Perfilación de la Expresión Génica , Hígado , Contaminantes Químicos del Agua/toxicidad
6.
J Ethnopharmacol ; 281: 114523, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34438031

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zishen Yutai Pill (ZYP) is a widely used Traditional Chinese Medicine in Assisted Reproductive Technology (ART) medications, particularly in China. ZYP has a potential therapeutic role in human reproductive health, including in vitro fertilization embryo transfer and various reproductive disorders. The National Essential Medicine List of China has recently included the ZYP in Obstetrics and Gynecology medicine due to its significance in treating miscarriage and fertility associated disorders. Various clinical studies have demonstrated the importance of ZYP in improving the fertility and pregnancy rate. However, the pharmacological and toxicological actions of ZYP on reproductive health has been scantly reported. AIM OF THE REVIEW: This review aims to emphasize the potential therapeutic effect of ZYP in ART and highlight its clinical significance in treating various reproductive disorders linked with hormonal balance, ovarian follicle development, menstrual cycle, uterine function and pregnancy. Additional insights on the safety evaluation of ZYP were elucidated by exploring an array of published experimental studies in various animal models with its molecular mechanism of action. MATERIALS AND METHODS: The literature review was conducted across the databases such as PubMed, ScienceDirect, Google Scholar, China Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang Database, International Clinical Trials Registry Platform and Cochrane Central Register of Controlled Trials with no time limit applied. The search terms used in this review include, 'Zishen Yutai Pills' and/or 'reproduction', 'assisted reproductive techniques', 'pregnancy', 'threatened abortion', 'miscarriage', 'fertility', 'infertility', 'disorders', 'women health', 'toxicity', and 'adverse effects'. RESULTS: ZYP is a combination of fifteen traditional medicines and each of its components has various biological functions in humans. ZYP has improved the fertility and pregnancy rate through in vitro fertilization-embryo transfer. Further, various clinical studies have revealed that ZYP showed the curative effect for miscarriage, recurrent spontaneous abortion, menstrual disorder, luteal dysfunction, diminished ovarian reserve, polycystic ovary syndrome and premature ovarian insufficiency. The intervention of ZYP has multiple roles in reproductive functions such as regulation of ovulation, follicle development, menstrual flow, hormonal balance and endometrial thickness. The reproductive and toxicological reports in various animal models have highlighted the efficacy and safety of ZYP on the reproductive functions. CONCLUSION: Nowadays, many problems are associated with maternal health, fertility and reproduction, due to the various physiological and environmental factors. The intervention of ART provides hope to infertile patients. Overall, this review provides insights on the therapeutic importance of ZYP in ART medications and treating various reproductive disorders.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Técnicas Reproductivas Asistidas , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/toxicidad , Endometrio , Femenino , Humanos , Salud Reproductiva
7.
Phytother Res ; 35(12): 6655-6689, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34431559

RESUMEN

Aucklandiae radix (AR, Muxiang), vladimiriae radix (VR, Chuanmuxiang), and inulae radix (IR, Tumuxiang) are widely used in clinical or folk medicine in China. Their Chinese names all have the Chinese character "Muxiang," which makes it confusable in usage, especially AR and VR, because VR was used as a substitute for AR during a historical period. The National Health Commission of the People's Republic of China has approved AR as a functional food. However, VR and IR are not listed. Many research articles on three kinds of "Muxiang" have been published. However, no review was appeared to compare similarities and differences among the three kinds of "Muxiang." Here, the morphological characterization, phytochemistry, and pharmaceutical effects of AR, VR, and IR were reviewed. We found that only six compounds were common in the three species. Twenty-six compounds were common to AR and VR. Twenty-two compounds were common to AR and IR. Only seven compounds were common to VR and IR. The extracts of AR, VR, and IR were all reported with antiinflammatory effects, which is the most important activity of "Muxiang" species. The volatile oil of AR, VR, and IR had antibacterial activities. Extracts of AR and VR showed anti-gastric ulcers and anti-diarrhea effects. Extracts of AR and IR exhibited anticancer effects. In addition, AR extract had liver protective effect. It is worth mentioning that costunolide and dehydrocostus lactone, which were the common representative compounds of "Muxiang" species, showed antiinflammatory, anticancer, anti-gastric ulcers, and liver protective effects. This review will be a benefit reference for correct understanding and application of the three "Muxiang" species.


Asunto(s)
Medicamentos Herbarios Chinos , Aceites Volátiles , Úlcera Gástrica , Antiinflamatorios , Medicamentos Herbarios Chinos/farmacología , Humanos , Raíces de Plantas
8.
Environ Res ; 198: 111281, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33961825

RESUMEN

Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , SARS-CoV-2
9.
Sci Total Environ ; 739: 139851, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758936

RESUMEN

The occurrence of Benzotriazole Ultraviolet Stabilizer-328 (BUV-328) in different environmental and biological matrices is of immediate environmental concern. In the present study, we evaluated the toxicity of BUV-328 in zebrafish liver tissues to understand the role of oxidative damage in hepatotoxicity. Adult zebrafish were exposed to 0.01, 0.1 and 1 mg/L of BUV-328. At the end of 14, 28 and 42 days, liver tissues were examined for the responses of antioxidant enzymes, gene expression and histopathological alterations. The results indicated that superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities were elevated at concentrations of 0.1 and 1 mg/L on 14th and 28th day. Glutathione S-transferase (GST) activity and malondialdehyde (MDA) levels were elevated in all the treated groups. The transcriptional levels of genes encoding sod, cat, gpx and gst enzymes were increased at 14th day and then declined (except sod on 28th day). Moreover, transcription of cyp1a and hsp70 were up-regulated throughout the study period. Histopathological lesions such as hypertrophy, cellular and nuclear enlargement, cytoplasmic and nuclear degeneration, necrosis with pyknotic nuclei, lipid and cytoplasmic vacuolization and nuclear displacement to the periphery were found to be increased with the dose and exposure duration. In brief, our findings indicate that even a low dose of BUV-328 is toxic to induce oxidative stress and liver damage in zebrafish over a long period of exposure.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Antioxidantes , Catalasa , Hígado , Estrés Oxidativo , Superóxido Dismutasa , Triazoles
10.
Carbohydr Polym ; 245: 116573, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32718650

RESUMEN

In the present study, bacterial cellulose (BC) based nanocomposite dressing material was developed for third burn wound management by polydopamine (PD) coated BC with in situ reduction of silver nanoparticles (BC-PDAg). BC-PDAg nanocomposite was characterized to understand the morphological, physical and chemical properties. Antimicrobial activity of BC-PDAg against burn wound specific pathogens were significant. The in vitro cytotoxicity and proliferation studies revealed that BC-PDAg nanocomposite is biocompatible and it supports cell proliferation. Further, in vivo experiments on female albino Wistar rats confirmed that BC-PDAg was effective in wound healing by promoting re-epithelization, and collagen deposition as evidenced by histopathological analysis. Moreover, molecular gene expression study has revealed that BC-PDAg promotes healing process by regulating the expression of inflammatory, angiogenesis and growth factor genes. The overall performance of BC-PDAg nanocomposite suggests that it could be used as promising skin regenerative tool in modern medicine.


Asunto(s)
Antibacterianos/administración & dosificación , Quemaduras/tratamiento farmacológico , Celulosa/química , Sistemas de Liberación de Medicamentos/métodos , Gluconacetobacter xylinus/química , Nanopartículas del Metal/química , Nanocompuestos/administración & dosificación , Plata/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Bacterias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Ratones , Células 3T3 NIH , Nanocompuestos/química , Oxidación-Reducción , Ratas , Ratas Wistar
11.
Sci Total Environ ; 735: 139496, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32480152

RESUMEN

Pyriproxyfen (PPF), a broad-spectrum insecticide known to cause reproductive and endocrine disruption in invertebrates, while the data is scarce in aquatic vertebrates. The goal of this study is to investigate the impact of PPF on reproductive endocrine system of male and female zebrafish along hypothalamus-pituitary-gonadal (HPG) axis. In brain, PPF caused significant alteration in the transcripts of erα, lhß, and cyp19b genes in male and fshß, lhß, and cyp19b genes in female zebrafish. The downstream genes of steroidogenic pathway like, star, 3ßhsd, 17ßhsd, and cyp19a expression were significantly altered in gonad of both sexes. Subsequent changes in circulatory steroid hormone levels lead to imbalance in hormone homeostasis as revealed from estradiol/testosterone (E2/T) ratio. Further, the vitellogenin transcript level was enhanced in hepatic tissues and their blood plasma content was increased in male (16.21%) and declined in female (21.69%). PPF also induced histopathological changes in gonads such as, reduction of mature spermatocytes in male and vitellogenic oocytes in female zebrafish. The altered E2/T ratio and gonadal histopathology were supported by the altered transcript levels of HPG axis genes. Overall, these findings provide new insights of PPF in zebrafish reproductive system and highlights for further investigations on its potential risks in aquatic environment.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua/farmacología , Animales , Sistema Endocrino/efectos de los fármacos , Femenino , Gónadas/efectos de los fármacos , Homeostasis , Hipotálamo , Masculino , Piridinas , Reproducción , Vitelogeninas , Pez Cebra
12.
Sci Total Environ ; 718: 134546, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31839308

RESUMEN

In the present study, we explored the adverse effects of Octyl methoxycinnamate (OMC), and its photoproducts, namely 2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA) on the developmental stages of zebrafish using various biomarkers such as developmental toxicity, oxidative stress, antioxidant response, neurotoxicity and histopathological changes. The 96 h effective concentrations (EC50) of OMC, 2-EH and 4-MBA were found to be 64.0, 34.0 and 3.5 µg/mL, respectively in the embryo toxicity test. Embryos exposed to the EC50 of OMC, 2-EH and 4-MBA showed time-dependent increases in the malformation, heart rate and hatching delay. The lipid peroxidation (LPO) level was significantly (p < 0.05) increased and both induction and inhibition of SOD, CAT, GPx and GST activities were observed in the zebrafish embryos exposed to OMC, 2-EH and 4-MBA. GSH activity was significantly (p < 0.05) decreased in the highest exposure groups, when compared with the control. AChE activity was increased in lower concentrations of OMC, 2-EH and 4-MBA exposed embryos whereas, the activity was found to be decreased in highest concentration. Moreover, the histopathological studies showed severe damage to the muscle fibers and yolk sac regions of the larvae with 4-MBA treatment. The photoproduct 4-MBA has the highest toxic effect, followed by 2-EH and OMC. Our results provide useful insights into the impacts of OMC and its photoproducts on zebrafish development.


Asunto(s)
Estrés Oxidativo , Pez Cebra , Animales , Antioxidantes , Embrión no Mamífero , Larva , Peroxidación de Lípido , Rayos Ultravioleta
13.
J Appl Toxicol ; 38(11): 1388-1397, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29923290

RESUMEN

In the present study, we aimed to assess the adverse effects of zearalenone (ZEA) at environmentally relevant concentrations (0.5, 1, 5 and 10 µg l-1 ) on hypothalamic-pituitary-gonadal axis associated reproductive function using zebrafish model. ZEA was exposed to female zebrafish for 21 days to assess growth indices such as condition factor, hepatosomatic index, gonadosomatic index and caspase 3 activity. Further, expression of estrogen receptor (ER) α and CYP19a1b genes in the brain, ERα and vitellogenin (Vtg) genes in the liver and follicle-stimulating hormone receptor, luteinizing hormone receptor, ERα, steroidogenic acute regulatory protein, 3ß-hydroxysteroid dehydrogenase (HSD), 17-ßHSD and CYP19a1 genes in the ovary were also investigated. Our results showed that there were no significant changes in the condition factor and hepatosomatic index, whereas a significant (P < .05) reduction in the gonadosomatic index, increase in caspase 3 activities and Vtg expression was observed at higher concentration. However, no significant changes were observed at lower treatment levels. Further, we also observed significant (P < .05) upregulation in ERα, Vtg, luteinizing hormone receptor, steroidogenic acute regulatory protein, 3ß-HSD, 17ß-HSD, CYP19a1 and CYP19a1b genes in treatment groups with higher levels of ZEA. Moreover, in histopathological examination, we observed oocyte atresia and oocyte membrane detachment in ovaries at the highest concentration. In conclusion, the present study revealed the negative impact of ZEA on zebrafish reproductive system by involvement of the hypothalamic-pituitary-gonadal axis-associated reproductive function.


Asunto(s)
Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Ovario/efectos de los fármacos , Hipófisis/efectos de los fármacos , Zearalenona/toxicidad , Pez Cebra/crecimiento & desarrollo , Animales , Femenino , Hipotálamo/metabolismo , Ovario/metabolismo , Hipófisis/metabolismo , Reproducción/efectos de la radiación , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Aquat Toxicol ; 196: 132-145, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29407799

RESUMEN

Pyriproxyfen (2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine) (PPF), a pyridine-based pesticide widely used to control agricultural insect pests and mosquitoes in drinking water sources. However, its ecotoxicological data is limited in aquatic vertebrates particularly in fish. Hence, the present study aimed to evaluate the adverse effect of PPF in zebrafish embryo development (Danio rerio). In order to investigate the impact of PPF, embryos were exposed to 0.16, 0.33 and 1.66 µg/mL (0.52, 1.04 and 5.2 µM, respectively) for 96 hpf and various biomarker indices such as developmental toxicity (edema formation, hyperemia, heart size and scoliosis), oxidative stress (reactive oxygen species (ROS), lipid peroxidation (LPO) and nitric oxide (NO)), antioxidant responses (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH)), biochemical (lactate dehydrogenase (LDH) and acid phosphatase (AP)), neurotoxicity (acetylcholinesterase (AChE)), genotoxicity (apoptosis and DNA damage) and histopathological changes were determined. The results showed that severe developmental deformities and changes in heart rate were observed in embryos treated with highest (1.66 µg/mL) concentration than the control (P < 0.05). Heart size measurement showed that, significant change in heart size (P < 0.01) was observed in embryos of 96 hpf only at 1.66 µg/mL PPF exposure. The oxidative stress was apparent at highest test concentration (1.66 µg/mL) as reflected by the elevated ROS, LPO and NO and changes in antioxidant enzyme activities including SOD, CAT, GST and GPx (P < 0.05). Besides, GSH level and AChE activity were significantly lowered in 1.66 µg/mL PPF exposed group than the control. After 96 hpf of PPF exposure, no significant changes were found in AP activity whereas, a biphasic response was observed in the LDH activity. There was no genotoxic effect in embryos exposed to PPF at 0.16 and 0.33 µg/mL, while significant (P < 0.05) DNA damage and apoptosis were found in 1.66 µg/mL treated group. Histopathological analysis revealed that exposure to PPF at 1.66 µg/mL resulted in thinning of heart muscles, pericardial edema and hyperemia while there was no obvious changes were observed in other treatment groups. Hence, the results of the present study demonstrate that PPF could cause adverse effect on early developmental stages of zebrafish at higher concentration.


Asunto(s)
Biomarcadores/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piridinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Piridinas/análisis , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/análisis , Pez Cebra/crecimiento & desarrollo
15.
Chemosphere ; 198: 111-121, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29421719

RESUMEN

In the present study, we evaluated the zearalenone induced adverse effects in zebrafish embryos using various endpoints like embryo toxicity, heart rate, oxidative stress indicators (reactive oxygen species (ROS), lipid peroxidation (LPO), Nitric oxide (NO)), antioxidant responses (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase enzyme (GST) and reduced glutathione (GSH), metabolic biomarkers (lactate dehydrogenase (LDH) and Nitric oxide (NO)), neurotoxicity (acetylcholinesterase (AChE)), genotoxicity (comet assay and acridine orange staining (AO)) and histological analysis. In this study, four concentrations 350, 550, 750 and 950 µg/L of ZEA were chosen based on LC10 and LC50 values of the previous report. The results shows that ZEA induces developmental defects like pericardial edema, hyperemia, yolk sac edema, spine curvature and reduction in heart rate from above 550 µg/L exposure and the severity was increased with concentration and time dependent manner. Significant induction in oxidative stress indices (ROS, LPO and NO), reduction in antioxidant defence system (SOD, CAT, GPx, GST and GSH) and changes in metabolic biomarkers (LDH and AP) were observed at higher ZEA exposed concentration. Neurotoxic effects of ZEA were observed with significant inhibition of AChE activity at higher exposure groups (750 and 950 µg/L). Moreover, we also noticed DNA damage, apoptosis and histological changes in the higher ZEA treatments at 96 h post fertilization (hpf) embryos. Hence, in the present study we concluded that oxidative stress is the main culprit in ZEA induced developmental, genotoxicity and neurotoxicity in zebrafish embryos.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Embrión no Mamífero/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Zearalenona/toxicidad , Pez Cebra/metabolismo , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Daño del ADN , Embrión no Mamífero/anomalías , Embrión no Mamífero/enzimología , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...