Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
2.
N Engl J Med ; 389(7): 589-601, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37272516

RESUMEN

BACKGROUND: Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are malignant brain tumors that cause considerable disability and premature death. Vorasidenib, an oral brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, showed preliminary activity in IDH-mutant gliomas. METHODS: In a double-blind, phase 3 trial, we randomly assigned patients with residual or recurrent grade 2 IDH-mutant glioma who had undergone no previous treatment other than surgery to receive either oral vorasidenib (40 mg once daily) or matched placebo in 28-day cycles. The primary end point was imaging-based progression-free survival according to blinded assessment by an independent review committee. The key secondary end point was the time to the next anticancer intervention. Crossover to vorasidenib from placebo was permitted on confirmation of imaging-based disease progression. Safety was also assessed. RESULTS: A total of 331 patients were assigned to receive vorasidenib (168 patients) or placebo (163 patients). At a median follow-up of 14.2 months, 226 patients (68.3%) were continuing to receive vorasidenib or placebo. Progression-free survival was significantly improved in the vorasidenib group as compared with the placebo group (median progression-free survival, 27.7 months vs. 11.1 months; hazard ratio for disease progression or death, 0.39; 95% confidence interval [CI], 0.27 to 0.56; P<0.001). The time to the next intervention was significantly improved in the vorasidenib group as compared with the placebo group (hazard ratio, 0.26; 95% CI, 0.15 to 0.43; P<0.001). Adverse events of grade 3 or higher occurred in 22.8% of the patients who received vorasidenib and in 13.5% of those who received placebo. An increased alanine aminotransferase level of grade 3 or higher occurred in 9.6% of the patients who received vorasidenib and in no patients who received placebo. CONCLUSIONS: In patients with grade 2 IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next intervention. (Funded by Servier; INDIGO ClinicalTrials.gov number, NCT04164901.).


Asunto(s)
Antineoplásicos , Glioma , Recurrencia Local de Neoplasia , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Progresión de la Enfermedad , Método Doble Ciego , Glioma/tratamiento farmacológico , Glioma/genética , Isocitrato Deshidrogenasa/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piridinas/efectos adversos , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico
3.
Nat Med ; 29(3): 615-622, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823302

RESUMEN

Vorasidenib and ivosidenib inhibit mutant forms of isocitrate dehydrogenase (mIDH) and have shown preliminary clinical activity against mIDH glioma. We evaluated both agents in a perioperative phase 1 trial to explore the mechanism of action in recurrent low-grade glioma (IGG) and select a molecule for phase 3 testing. Primary end-point was concentration of D-2-hydroxyglutarate (2-HG), the metabolic product of mIDH enzymes, measured in tumor tissue from 49 patients with mIDH1-R132H nonenhancing gliomas following randomized treatment with vorasidenib (50 mg or 10 mg once daily, q.d.), ivosidenib (500 mg q.d. or 250 mg twice daily) or no treatment before surgery. Tumor 2-HG concentrations were reduced by 92.6% (95% credible interval (CrI), 76.1-97.6) and 91.1% (95% CrI, 72.0-97.0) in patients treated with vorasidenib 50 mg q.d. and ivosidenib 500 mg q.d., respectively. Both agents were well tolerated and follow-up is ongoing. In exploratory analyses, 2-HG reduction was associated with increased DNA 5-hydroxymethylcytosine, reversal of 'proneural' and 'stemness' gene expression signatures, decreased tumor cell proliferation and immune cell activation. Vorasidenib, which showed brain penetrance and more consistent 2-HG suppression than ivosidenib, was advanced to phase 3 testing in patients with mIDH LGGs. Funded by Agios Pharmaceuticals, Inc. and Servier Pharmaceuticals LLC; ClinicalTrials.gov number NCT03343197.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Piridinas/efectos adversos , Isocitrato Deshidrogenasa/genética , Glioma/tratamiento farmacológico , Glioma/genética , Mutación/genética , Preparaciones Farmacéuticas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética
4.
Discov Oncol ; 13(1): 126, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380219

RESUMEN

PURPOSE: Poor outcomes in IDH wild-type (IDHwt) glioblastomas indicate the need to determine which genetic alterations can indicate poor survival and guidance of patient specific treatment options. We sought to identify the genetic alterations in these patients that predict for survival when adjusting particularly for treatments and other genetic alterations. METHODS: A cohort of 167 patients with pathologically confirmed IDHwt glioblastomas treated at our institution was retrospectively reviewed. Next generation sequencing was performed for each patient to determine tumor genetic alterations. Multivariable cox proportional hazards analysis for overall survival (OS) was performed to control for patient variables. RESULTS: CDKN2A, CDKN2B, and MTAP deletion predict for worse OS independently of other genetic alterations and patient characteristics (hazard ratio [HR] 2.192, p = 0.0017). Patients with CDKN2A copy loss (HR 2.963, p = 0.0037) or TERT mutated (HR 2.815, p = 0.0008) glioblastomas exhibited significant associations between radiation dose and OS, while CDKN2A and TERT wild type patients did not. CDKN2A deleted patients with NF1 mutations had worse OS (HR 1.990, p = 0.0540), while CDKN2A wild type patients had improved OS (HR 0.229, p = 0.0723). Patients with TERT mutated glioblastomas who were treated with radiation doses < 45 Gy (HR 3.019, p = 0.0010) but not those treated with ≥ 45 Gy exhibited worse OS compared to those without TERT mutations. CONCLUSION: In IDHwt glioblastomas, CDKN2A, CDKN2B, and MTAP predict for poor prognosis. TERT and CDKN2A mutations are associated with worse survival only when treated with lower radiation doses, thus potentially providing a genetic marker that can inform clinicians on proper dose-fractionation schemes.

5.
Front Oncol ; 12: 1000280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158642

RESUMEN

Introduction: Poor outcomes in glioma patients indicate a need to determine prognostic indicators of survival to better guide patient specific treatment options. While preoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) have been suggested as prognostic systemic inflammation markers, the impact of post-radiation changes in these cell types is unclear. We sought to identify which hematologic cell measurements before, during, or after radiation predicted for patient survival. Methods: A cohort of 182 patients with pathologically confirmed gliomas treated at our institution was retrospectively reviewed. Patient blood samples were collected within one month before, during, or within 3 months after radiation for quantification of hematologic cell counts, for which failure patterns were evaluated. Multivariable cox proportional hazards analysis for overall survival (OS) and progression-free survival (PFS) was performed to control for patient variables. Results: Multivariable analysis identified pre-radiation NLR > 4.0 (Hazard ratio = 1.847, p = 0.0039) and neutrophilia prior to (Hazard ratio = 1.706, p = 0.0185), during (Hazard ratio = 1.641, p = 0.0277), or after (Hazard ratio = 1.517, p = 0.0879) radiation as significant predictors of worse OS, with similar results for PFS. Post-radiation PLR > 200 (Hazard ratio = 0.587, p = 0.0062) and a percent increase in platelets after radiation (Hazard ratio = 0.387, p = 0.0077) were also associated with improved OS. Patients receiving more than 15 fractions of radiation exhibited greater post-radiation decreases in neutrophil and platelet counts than those receiving fewer. Patients receiving dexamethasone during radiation exhibited greater increases in neutrophil counts than those not receiving steroids. Lymphopenia, changes in lymphocyte counts, monocytosis, MLR, and changes in monocyte counts did not impact patient survival. Conclusion: Neutrophilia at any time interval surrounding radiotherapy, pre-radiation NLR, and post-radiation thrombocytopenia, but not lymphocytes or monocytes, are predictors of poor patient survival in glioma patients.

6.
Magn Reson Med ; 87(3): 1150-1164, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34657302

RESUMEN

PURPOSE: J-Difference editing (MEGA) provides an effective spectroscopic means of selectively measuring low-concentration metabolites having weakly coupled spins. The fractional inphase and antiphase coherences are determined by the radiofrequency (RF) pulses and inter-RF pulse intervals of the sequence. We examined the timings of the spectrally selective editing 180° pulses (E180) in MEGA-PRESS to maximize the edited signal amplitude in lactate at 3T. METHODS: The time evolution of the lactate spin coherences was analytically and numerically calculated for non-volume localized and single-voxel localized MEGA sequences. Single-voxel localized MEGA-PRESS simulations and phantom experiments were conducted for echo time (TE) 60-160 ms and for all possible integer-millisecond timings of the E180 pulses. Optimized E180 timings of 144, 103, and 109 ms TEs, tailored with simulation and phantom data, were tested in brain tumor patients in vivo. Lactate signals, broadened to singlet linewidths (~6 Hz), were compared between simulation, phantom, and in vivo data. RESULTS: Theoretical and experimental data indicated consistently that the MEGA-edited signal amplitude and width are sensitive to the E180 timings. In volume-localized MEGA, the lactate peak amplitudes in E180-on and difference spectra were maximized at specific E180 timings for individual TEs, largely due to the chemical-shift displacement effects. The E180 timings for maximum lactate peak amplitude were different from those of maximum inphase coherence in in vivo linewidth situations. CONCLUSION: In in vivo MEGA editing, the E180 pulse timings can be effectively used for manipulating the inphase and antiphase coherences and increasing the edited signal amplitude, following TE optimization.


Asunto(s)
Ácido Láctico , Ondas de Radio , Frecuencia Cardíaca , Humanos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
7.
Clin Cancer Res ; 27(16): 4491-4499, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34078652

RESUMEN

PURPOSE: Lower grade gliomas (LGGs) are malignant brain tumors. Current therapy is associated with short- and long-term toxicity. Progression to higher tumor grade is associated with contrast enhancement on MRI. The majority of LGGs harbor mutations in the genes encoding isocitrate dehydrogenase 1 or 2 (IDH1/IDH2). Vorasidenib (AG-881) is a first-in-class, brain-penetrant, dual inhibitor of the mutant IDH1 and mutant IDH2 enzymes. PATIENTS AND METHODS: We conducted a multicenter, open-label, phase I, dose-escalation study of vorasidenib in 93 patients with mutant IDH1/2 (mIDH1/2) solid tumors, including 52 patients with glioma that had recurred or progressed following standard therapy. Vorasidenib was administered orally, once daily, in 28-day cycles until progression or unacceptable toxicity. Enrollment is complete; this trial is registered with ClinicalTrials.gov, NCT02481154. RESULTS: Vorasidenib showed a favorable safety profile in the glioma cohort. Dose-limiting toxicities of elevated transaminases occurred at doses ≥100 mg and were reversible. The protocol-defined objective response rate per Response Assessment in Neuro-Oncology criteria for LGG in patients with nonenhancing glioma was 18% (one partial response, three minor responses). The median progression-free survival was 36.8 months [95% confidence interval (CI), 11.2-40.8] for patients with nonenhancing glioma and 3.6 months (95% CI, 1.8-6.5) for patients with enhancing glioma. Exploratory evaluation of tumor volumes in patients with nonenhancing glioma showed sustained tumor shrinkage in multiple patients. CONCLUSIONS: Vorasidenib was well tolerated and showed preliminary antitumor activity in patients with recurrent or progressive nonenhancing mIDH LGG.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Diaminas/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/genética , Isocitrato Deshidrogenasa/genética , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Piridinas/uso terapéutico , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Femenino , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Magn Reson Med ; 86(4): 1818-1828, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33977579

RESUMEN

PURPOSE: 1 H MRS provides a noninvasive tool for identifying mutations in isocitrate dehydrogenase (IDH). Quantification of the prominent 2-hydroxyglutarate (2HG) resonance at 2.25 ppm is often confounded by the lipid resonance at the same frequency in tumors with elevated lipids. We propose a new spectral fitting approach to separate these overlapped signals, therefore, improving 2HG evaluation. METHODS: TE 97 ms PRESS was acquired at 3T from 42 glioma patients. New lipid basis sets were created, in which the small lipid 2.25-ppm signal strength was preset with reference to the lipid signal at 0.9 ppm, incorporating published fat relaxation data. LCModel fitting using the new lipid bases (Fitting method 2) was conducted along with fitting using the LCModel built-in lipid basis set (Fitting method 1), in which the lipid 2.25-ppm signal is assessed with reference to the lipid 1.3-ppm signal. In-house basis spectra of low-molecular-weight metabolites were used in both fitting methods. RESULTS: Fitting method 2 showed marked improvement in identifying IDH mutational status compared with Fitting method 1. 2HG estimates from Fitting method 2 were overall smaller than those from Fitting method 1, which was because of differential assignment of the signal at 2.25 ppm to lipids. In receiver operating characteristic analysis, Fitting method 2 provided a complete distinction between IDH mutation and wild-type whereas Fitting method 1 did not. CONCLUSION: The data suggest that 1 H MR spectral fitting using the new lipid basis set provides a robust fitting strategy that improves 2HG evaluation in brain tumors with elevated lipids.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Glutaratos , Humanos , Lípidos , Espectroscopía de Resonancia Magnética
9.
Neuro Oncol ; 22(7): 1018-1029, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32055850

RESUMEN

BACKGROUND: High-grade gliomas likely remodel the metabolic machinery to meet the increased demands for amino acids and nucleotides during rapid cell proliferation. Glycine, a non-essential amino acid and intermediate of nucleotide biosynthesis, may increase with proliferation. Non-invasive measurement of glycine by magnetic resonance spectroscopy (MRS) was evaluated as an imaging biomarker for assessment of tumor aggressiveness. METHODS: We measured glycine, 2-hydroxyglutarate (2HG), and other tumor-related metabolites in 35 glioma patients using an MRS sequence tailored for co-detection of glycine and 2HG in gadolinium-enhancing and non-enhancing tumor regions on 3T MRI. Glycine and 2HG concentrations as measured by MRS were correlated with tumor cell proliferation (MIB-1 labeling index), expression of mitochondrial serine hydroxymethyltransferase (SHMT2), and glycine decarboxylase (GLDC) enzymes, and patient overall survival. RESULTS: Elevated glycine was strongly associated with presence of gadolinium enhancement, indicating more rapidly proliferative disease. Glycine concentration was positively correlated with MIB-1, and levels higher than 2.5 mM showed significant association with shorter patient survival, irrespective of isocitrate dehydrogenase status. Concentration of 2HG did not correlate with MIB-1 index. A high glycine/2HG concentration ratio, >2.5, was strongly associated with shorter survival (P < 0.0001). GLDC and SHMT2 expression were detectable in all tumors with glycine concentration, demonstrating an inverse correlation with GLDC. CONCLUSIONS: The data suggest that aggressive gliomas reprogram glycine-mediated one-carbon metabolism to meet the biosynthetic demands for rapid cell proliferation. MRS evaluation of glycine provides a non-invasive metabolic imaging biomarker that is predictive of tumor progression and clinical outcome. KEY POINTS: 1. Glycine and 2-hydroxyglutarate in glioma patients are precisely co-detected using MRS at 3T.2. Tumors with elevated glycine proliferate and progress rapidly.3. A high glycine/2HG ratio is predictive of shortened patient survival.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Anciano , Biomarcadores , Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste , Femenino , Gadolinio , Glioma/diagnóstico por imagen , Glutaratos , Glicina , Humanos , Isocitrato Deshidrogenasa/genética , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Magn Reson Med ; 84(3): 1152-1160, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32003035

RESUMEN

PURPOSE: To generate a preclinical model of isocitrate dehydrogenase (IDH) mutant gliomas from glioma patients and design a MRS method to test the compatibility of 2-hydroxyglutarate (2HG) production between the preclinical model and patients. METHODS: Five patient-derived xenograft (PDX) mice were generated from two glioma patients with IDH1 R132H mutation. A PRESS sequence was tailored at 9.4 T, with computer simulation and phantom analyses, for improving 2HG detection in mice. 2HG and other metabolites in the PDX mice were measured using the optimized MRS at 9.4 T and compared with 3 T MRS measurements of the metabolites in the parental-tumor patients. Spectral fitting was performed with LCModel using in-house basis spectra. Metabolite levels were quantified with reference to water. RESULTS: The PRESS TE was optimized to be 96 ms, at which the 2HG 2.25 ppm signal was narrow and inverted, thereby leading to unequivocal separation of the 2HG resonance from adjacent signals from other metabolites. The optimized MRS provided precise detection of 2HG in mice compared to short-TE MRS at 9.4 T. The 2HG estimates in PDX mice were in excellent agreement with the 2HG measurements in the patients. CONCLUSION: The similarity of 2HG production between PDX models and parental-tumor patients indicates that PDX tumors retain the parental IDH metabolic fingerprint and can serve as a preclinical model for improving our understanding of the IDH-mutation associated metabolic reprogramming.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Simulación por Computador , Glioma/diagnóstico por imagen , Glioma/genética , Glutaratos , Humanos , Isocitrato Deshidrogenasa/genética , Espectroscopía de Resonancia Magnética , Ratones , Trasplante de Neoplasias
11.
Clin Cancer Res ; 26(11): 2457-2460, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060102

RESUMEN

Members of the scientific and clinical neuro-oncology community met in April 2019 to discuss the current challenges and opportunities associated with translating basic science discoveries in glioblastoma for improved survival of patients. A summary of key points of these discussions is presented in this article.


Asunto(s)
Antineoplásicos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Terapia Molecular Dirigida , Investigación Biomédica Traslacional , Glioblastoma/patología , Humanos
12.
Lancet Gastroenterol Hepatol ; 4(9): 711-720, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31300360

RESUMEN

BACKGROUND: Isocitrate dehydrogenase-1 (IDH1) is mutated in up to 25% of cholangiocarcinomas, especially intrahepatic cholangiocarcinoma. Ivosidenib is an oral, targeted inhibitor of mutant IDH1 (mIDH1) approved in the USA for the treatment of mIDH1 acute myeloid leukaemia in newly diagnosed patients ineligible for intensive chemotherapy and patients with relapsed or refractory disease. Ivosidenib is under clinical evaluation in a phase 1 study that aims to assess its safety and tolerability in patients with mIDH1 solid tumours. Here we report data for the mIDH1-cholangiocarcinoma cohort. METHODS: We did a phase 1 dose-escalation and expansion study of ivosidenib monotherapy in mIDH1 solid tumours at 12 clinical sites in the USA and one in France. The primary outcomes were safety, tolerability, maximum tolerated dose, and recommended phase 2 dose. Eligible patients had a documented mIDH1 tumour based on local testing, an Eastern Cooperative Oncology Group performance status of 0 or 1, one or more previous lines of therapy, and evaluable disease by Response Evaluation Criteria in Solid Tumors version 1.1. During dose escalation, ivosidenib was administered orally at 200-1200 mg daily in 28-day cycles in a standard 3 + 3 design; during expansion, patients received the selected dose on the basis of pharmacodynamic, pharmacokinetic, safety, and activity data from dose escalation. Safety and clinical activity analyses were reported for all patients with mIDH1-cholangiocarcinoma who were enrolled and received at least one dose of study treatment. Enrolment is complete, and the study is ongoing. This trial is registered at ClinicalTrials.gov, number NCT02073994. FINDINGS: Between March 14, 2014 and May 12, 2017, 73 patients with mIDH1-cholangiocarcinoma were enrolled and received ivosidenib. No dose-limiting toxicities were reported and maximum tolerated dose was not reached; 500 mg daily was selected for expansion. Common (≥20%) adverse events, regardless of cause, were fatigue (31 [42%]; two [3%] grade ≥3), nausea (25 [34%]; one [1%] grade ≥3), diarrhoea (23 [32%]), abdominal pain (20 [27%]; two [3%] grade ≥3), decreased appetite (20 [27%]; one [1%] grade ≥3), and vomiting (17 [23%]). Common grade 3 or worse adverse events were ascites (four [5%]) and anaemia (three [4%]); the only treatment-related grade 3 or worse adverse event in more than one patient was fatigue (two [3%]). Two (3%) patients had serious adverse events leading to on-treatment death (Clostridioides difficile infection and procedural haemorrhage); neither was assessed by the investigator as related to treatment. 46 (63%) patients had adverse events deemed related to ivosidenib, of which four (5%) were grade 3 or higher (two [3%] for fatigue; one [1%] each for decreased blood phosphorus and increased blood alkaline phosphatase). One serious adverse event was considered possibly related to treatment (grade 2 supraventricular extrasystoles). Four (5%; 95% CI 1·5-13·4) patients had a partial response. Median progression-free survival was 3·8 months (95% CI 3·6-7·3), 6-month progression-free survival was 40·1% (28·4-51·6), and 12-month progression-free survival was 21·8% (12·3-33·0). Median overall survival was 13·8 months (95% CI 11·1-29·3); however, data were censored for 48 patients (66%). INTERPRETATION: Ivosidenib might offer a well tolerated option for patients with mIDH1-cholangiocarcinoma. An ongoing, global phase 3 study is evaluating ivosidenib versus placebo in patients with previously treated nonresectable or metastatic mIDH1-cholangiocarcinoma. FUNDING: Agios Pharmaceuticals, Inc.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Glicina/análogos & derivados , Piridinas/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/mortalidad , Colangiocarcinoma/genética , Colangiocarcinoma/mortalidad , Relación Dosis-Respuesta a Droga , Femenino , Glicina/administración & dosificación , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Mutación , Supervivencia sin Progresión
13.
J Neuropathol Exp Neurol ; 78(6): 501-507, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31034050

RESUMEN

Glioblastoma (GBM), representing WHO grade IV astrocytoma, is a relatively common primary brain tumor in adults with an exceptionally dismal prognosis. With an incidence rate of over 10 000 cases in the United States annually, the median survival rate ranges from 10-15 months in IDH1/2-wildtype tumors and 24-31 months in IDH1/2-mutant tumors, with further variation depending on factors such as age, MGMT methylation status, and treatment regimen. We present a cohort of 4 patients, aged 37-60 at initial diagnosis, with IDH1-mutant GBMs that were associated with unusually long survival intervals after the initial diagnosis, currently ranging from 90 to 154 months (all still alive). We applied genome-wide profiling with a methylation array (Illumina EPIC Array 850k) and a next-generation sequencing panel to screen for genetic and epigenetic alterations in these tumors. All 4 tumors demonstrated methylation patterns and genomic alterations consistent with GBM. Three out of four cases showed focal amplification of the CCND2 gene or gain of the region on 12p that included CCND2, suggesting that this may be a favorable prognostic factor in GBM. As this study has a limited sample size, further evaluation of patients with similar favorable outcome is warranted to validate these findings.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Adulto , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/cirugía , Estudios de Cohortes , Ciclina D2/genética , Metilación de ADN , Epigénesis Genética , Femenino , Dosificación de Gen , Estudio de Asociación del Genoma Completo , Glioblastoma/mortalidad , Glioblastoma/cirugía , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunohistoquímica , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Análisis de Supervivencia
14.
Magn Reson Med ; 81(2): 795-802, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277274

RESUMEN

PURPOSE: To develop 3D high-resolution imaging of 2-hydroxyglutarate (2HG) at 3T in vivo. METHODS: Echo-planar spectroscopic imaging with dual-readout alternated-gradients (DRAG-EPSI), which was recently reported for 2D imaging of 2HG at 7T, was tested for 3D imaging of 2HG at 3T. The frequency drifts and acoustic noise induced by DRAG-EPSI were investigated in comparison with conventional EPSI. Four patients with IDH-mutant gliomas were enrolled for 3D imaging of 2HG and other metabolites. A previously reported 2HG-tailored TE 97-ms PRESS sequence preceded the DRAG-EPSI readout gradients. Unsuppressed water, acquired with EPSI, was used as reference for multi-channel combination, eddy-current compensation, and metabolite quantification. Spectral fitting was conducted with the LCModel using in-house basis sets. RESULTS: With gradient strength of 4 mT/m and slew rate of 20 mT/m/ms, DRAG-EPSI produced frequency drifts smaller by 5.5-fold and acoustic noise lower by 25 dB compared to conventional EPSI. In a 19-min scan, 3D DRAG-EPSI provided images of 2HG with precision (CRLB <10%) at a resolution of 10 × 10 × 10 mm3 for a field of view of 240 × 180 × 80 mm3 . 2HG was estimated to be 5 mM in a pre-treatment patient. In 3 post-surgery patients, 2HG estimates were 3-6 mM, and the 2HG distribution was different from the water-T2 image pattern or highly concentrated in the post-contrast enhancing region. CONCLUSION: Together with 2HG-optimized PRESS, DRAG-EPSI provides an effective tool for reliable 3D high-resolution imaging of 2HG at 3T in vivo.


Asunto(s)
Astrocitoma/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Imagen Eco-Planar , Glioma/diagnóstico por imagen , Glutaratos/análisis , Imagenología Tridimensional , Oligodendroglioma/diagnóstico por imagen , Acústica , Adulto , Algoritmos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Medios de Contraste , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Mutación , Fantasmas de Imagen , Imagen de Cuerpo Entero
15.
Cell Metab ; 28(5): 793-800.e2, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146487

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common form of human kidney cancer. Histological and molecular analyses suggest that ccRCCs have significantly altered metabolism. Recent human studies of lung cancer and intracranial malignancies demonstrated an unexpected preservation of carbohydrate oxidation in the tricarboxylic acid (TCA) cycle. To test the capacity of ccRCC to oxidize substrates in the TCA cycle, we infused 13C-labeled fuels in ccRCC patients and compared labeling patterns in tumors and adjacent kidney. After infusion with [U-13C]glucose, ccRCCs displayed enhanced glycolytic intermediate labeling, suppressed pyruvate dehydrogenase flow, and reduced TCA cycle labeling, consistent with the Warburg effect. Comparing 13C labeling among ccRCC, brain, and lung tumors revealed striking differences. Primary ccRCC tumors demonstrated the highest enrichment in glycolytic intermediates and lowest enrichment in TCA cycle intermediates. Among human tumors analyzed by intraoperative 13C infusions, ccRCC is the first to demonstrate a convincing shift toward glycolytic metabolism.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Glucosa/metabolismo , Neoplasias Renales/metabolismo , Adulto , Anciano , Isótopos de Carbono/metabolismo , Carcinoma de Células Renales/patología , Ciclo del Ácido Cítrico , Glucólisis , Humanos , Riñón/metabolismo , Riñón/patología , Neoplasias Renales/patología , Persona de Mediana Edad , Oxidación-Reducción
16.
J Neurosurg ; 128(2): 391-398, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28298040

RESUMEN

OBJECTIVE Mutations in the isocitrate dehydrogenase (IDH) genes are of proven diagnostic and prognostic significance for cerebral gliomas. The objective of this study was to evaluate the clinical feasibility of using a recently described method for determining IDH mutation status by using magnetic resonance spectroscopy (MRS) to detect the presence of 2-hydroxyglutarate (2HG), the metabolic product of the mutant IDH enzyme. METHODS By extending imaging time by 6 minutes, the authors were able to include a point-resolved spectroscopy (PRESS) MRS sequence in their routine glioma imaging protocol. In 30 of 35 patients for whom this revised protocol was used the lesions were subsequently diagnosed histologically as gliomas. Of the remaining 5 patients, 1 had a gangliocytoma, 1 had a primary CNS lymphoma, and 3 had nonneoplastic lesions. Immunohistochemistry and/or polymerase chain reaction were used to detect the presence of IDH mutations in the glioma tissue resected. RESULTS In vivo MRS for 2HG correctly identified the IDH mutational status in 88.6% of patients. The sensitivity and specificity was 89.5% and 81.3%, respectively, when using 2 mM 2HG as threshold to discriminate IDH-mutated from wildtype tumors. Two glioblastomas that had elevated 2HG levels did not have detectable IDH mutations, and in 2 IDH-mutated gliomas 2HG was not reliably detectable. CONCLUSIONS The noninvasive determination of the IDH mutation status of a presumed glioma by means of MRS may be incorporated into a routine diagnostic imaging protocol and can be used to obtain additional information for patient care.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Deshidrogenasa/genética , Espectroscopía de Resonancia Magnética/métodos , Mutación/genética , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Análisis Mutacional de ADN , Femenino , Glioma/diagnóstico por imagen , Glioma/patología , Glutaratos/análisis , Humanos , Biopsia Guiada por Imagen , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Pronóstico , Sensibilidad y Especificidad , Adulto Joven
17.
Magn Reson Med ; 79(4): 1851-1861, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28833542

RESUMEN

PURPOSE: To develop echo-planar spectroscopic imaging (EPSI) with large spectral width and accomplish high-resolution imaging of 2-hydroxyglutarate (2HG) at 7 T. METHODS: We designed a new EPSI readout scheme at 7 T. Data were recorded with dual-readout alternated gradients and combined according to the gradient polarity. Following validation of its performance in phantoms, the new readout scheme, together with previously reported 2HG-optimized magnetic resonance spectroscopy (point-resolved spectroscopy echo time of 78 ms), was used for time-efficient and high-resolution imaging of 2HG and other metabolites in five glioma patients before treatment. Unsuppressed water, acquired with EPSI, was used as reference for multichannel combination, eddy-current compensation, and metabolite quantification. Spectral fitting was conducted with the LCModel using in-house calculated basis sets. RESULTS: Using a readout gradient strength of 9.5 mT/m and slew rate of 90 mT/m/ms, dual-readout alternated gradients EPSI permitted 1638-Hz spectral width with 6 × 6 mm2 in-plane resolution at 7 T. Phantom data indicated that dual-readout alternated gradients EPSI provides proper metabolite signals and induces much less frequency drifts than conventional EPSI. For a spatial resolution of 0.5 mL, 2HG was detected in tumors with precision (Cramer-Rao lower bound < 10%). The 2HG was estimated to be 2.3 to 3.3 mM in tumors of three patients with biopsy-proven isocitrate dehydrogenase (IDH) mutant gliomas. The 2HG was undetectable in an IDH wild-type glioblastoma. For a radiographically suggested glioma, the estimated 2HG of 2.3 ± 0.2 mM (Cramer-Rao lower bound < 10%) indicated that the lesion may be an IDH mutant glioma. CONCLUSIONS: The data indicated that the dual-readout alternated gradients EPSI can provide reliable high-resolution imaging of 2HG in glioma patients at 7 T in vivo. Magn Reson Med 79:1851-1861, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Imagen Eco-Planar/métodos , Glioma/diagnóstico por imagen , Glutaratos/química , Espectroscopía de Resonancia Magnética/métodos , Adulto , Biomarcadores , Neoplasias Encefálicas/genética , Femenino , Glioma/genética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Mutación , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/genética , Fantasmas de Imagen
18.
FEBS Lett ; 591(21): 3548-3554, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28963851

RESUMEN

Malignant brain tumors are known to utilize acetate as an alternate carbon source in the citric acid cycle for their bioenergetics. 13 C NMR-based isotopomer analysis has been used to measure turnover of 13 C-acetate carbons into glutamate and glutamine pools in tumors. Plasma from the patients infused with [1,2-13 C]acetate further revealed the presence of 13 C isotopomers of glutamine, glucose, and lactate in the circulation that were generated due to metabolism of [1,2-13 C]acetate by peripheral organs. In the tumor cells, [4-13 C] and [3,4-13 C]glutamate and glutamine isotopomers were generated from blood-borne 13 C-labeled glucose and lactate which were formed due to [1,2-13 C[acetate metabolism of peripheral tissues. [4,5-13 C] and [3,4,5-13 C]glutamate and glutamine isotopomers were produced from [1,2-13 C]acetyl-CoA that was derived from direct oxidation of [1,2-13 C] acetate in the tumor. Major portion of C4 13 C fractional enrichment of glutamate (93.3 ± 0.02%) and glutamine (90.9 ± 0.03%) were derived from [1,2-13 C]acetate-derived acetyl-CoA.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Acetatos/administración & dosificación , Acetatos/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagen , Isótopos de Carbono/farmacocinética , Femenino , Humanos , Masculino
19.
NMR Biomed ; 30(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28548710

RESUMEN

Glycine (Gly) has been implicated in several neurological disorders, including malignant brain tumors. The precise measurement of Gly is challenging largely as a result of the spectral overlap with myo-inositol (mI). We report a new triple-refocusing sequence for the reliable co-detection of Gly and mI at 3 T and for the evaluation of Gly in healthy and tumorous brain. The sequence parameters were optimized with density-matrix simulations and phantom validation. With a total TE of 134 ms, the sequence gave complete suppression of the mI signal between 3.5 and 3.6 ppm and, consequently, well-defined Gly (3.55 ppm) and mI (3.64 ppm) peaks. In vivo 1 H magnetic resonance spectroscopy (MRS) data were acquired from the gray matter (GM)-dominant medial occipital and white matter (WM)-dominant left parietal regions in six healthy subjects, and analyzed with LCModel using in-house-calculated basis spectra. Tissue segmentation was performed to obtain the GM and WM contents within the MRS voxels. Metabolites were quantified with reference to GM-rich medial occipital total creatine at 8 mM. The Gly and mI concentrations were estimated to be 0.63 ± 0.05 and 8.6 ± 0.6 mM for the medial occipital and 0.34 ± 0.05 and 5.3 ± 0.8 mM for the left parietal regions, respectively. From linear regression of the metabolite estimates versus fractional GM content, the concentration ratios between pure GM and pure WM were estimated to be 2.6 and 2.1 for Gly and mI, respectively. Clinical application of the optimized sequence was performed in four subjects with brain tumor. The Gly levels in tumors were higher than those of healthy brain. Gly elevation was more extensive in a post-contrast enhancing region than in a non-enhancing region. The data indicate that the optimized triple-refocusing sequence may provide reliable co-detection of Gly and mI, and alterations of Gly in brain tumors can be precisely evaluated.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glicina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Sustancia Gris/metabolismo , Humanos , Inositol/metabolismo , Modelos Lineales , Masculino , Fantasmas de Imagen
20.
J Neurooncol ; 133(1): 183-192, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28421459

RESUMEN

According to the recently updated World Health Organization (WHO) classification (2016), grade II-III astrocytomas are divided into IDH-wildtype and IDH-mutant groups, the latter being significantly less aggressive in terms of both progression-free and total survival. We identified a small cohort of WHO grade II-III astrocytomas that harbored the IDH1 R132H mutation, as confirmed by both immunohistochemistry and molecular sequence analysis, which nonetheless had unexpectedly rapid recurrence and subsequent progression to glioblastoma. Among these four cases, the mean time to recurrence as glioblastoma was only 16 months and the mean total survival among the three patients who have died during the follow-up was only 31 months. We hypothesized that these tumors had other, unfavorable genetic or epigenetic alterations that negated the favorable effect of the IDH mutation. We applied genome-wide profiling with a methylation array (Illumina Infinium Human Methylation 450k) to screen for genetic and epigenetic alterations in these tumors. As expected, the methylation profiles of all four tumors were found to match most closely with IDH-mutant astrocytomas. Compared with a control group of four indolent, age-similar WHO grade II-III astrocytomas, the tumors showed markedly increased levels of overall copy number changes, but no consistent specific genetic alterations were seen across all of the tumors. While most IDH-mutant WHO grade II-III astrocytomas are relatively indolent, a subset may rapidly recur and progress to glioblastoma. The precise underlying cause of the increased aggressiveness in these gliomas remains unknown, although it may be associated with increased genomic instability.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Isocitrato Deshidrogenasa/genética , Mutación , Adulto , Astrocitoma/mortalidad , Astrocitoma/patología , Astrocitoma/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Variaciones en el Número de Copia de ADN , Metilación de ADN , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo , Glioblastoma/mortalidad , Glioblastoma/patología , Glioblastoma/fisiopatología , Humanos , Inmunohistoquímica , Isocitrato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/mortalidad , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...