Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659853

RESUMEN

Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2-knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested Hepatocyte nuclear factor 4-alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.

2.
World J Gastrointest Oncol ; 15(8): 1349-1365, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37663943

RESUMEN

BACKGROUND: There is an intimate crosstalk between cancer formation, dissemination, treatment response and the host immune system, with inducing tumour cell death the ultimate therapeutic goal for most anti-cancer treatments. However, inducing a purposeful synergistic response between conventional therapies and the immune system remains evasive. The release of damage associated molecular patterns (DAMPs) is indicative of immunogenic cell death and propagation of established immune responses. However, there is a gap in the literature regarding the importance of DAMP expression in oesophageal adenocarcinoma (OAC) or by immune cells themselves. AIM: To investigate the effects of conventional therapies on DAMP expression and to determine whether OAC is an immunogenic cancer. METHODS: We investigated the levels of immunogenic cell death-associated DAMPs, calreticulin (CRT) and HMGB1 using an OAC isogenic model of radioresistance. DAMP expression was also assessed directly using ex vivo cancer patient T cells (n = 10) and within tumour biopsies (n = 9) both pre and post-treatment with clinically relevant chemo(radio)therapeutics. RESULTS: Hypoxia in combination with nutrient deprivation significantly reduces DAMP expression by OAC cells in vitro. Significantly increased frequencies of T cell DAMP expression in OAC patients were observed following chemo(radio)therapy, which was significantly higher in tumour tissue compared with peripheral blood. Patients with high expression of HMGB1 had a significantly better tumour regression grade (TRG 1-2) compared to low expressors. CONCLUSION: In conclusion, OAC expresses an immunogenic phenotype with two distinct subgroups of high and low DAMP expressors, which correlated with tumour regression grade and lymphatic invasion. It also identifies DAMPs namely CRT and HMGB1 as potential promising biomarkers in predicting good pathological responses to conventional chemo(radio)therapies currently used in the multimodal management of locally advanced disease.

3.
Qual Life Res ; 32(12): 3359-3371, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37491582

RESUMEN

PURPOSE: The Impact of Weight on Self-perception Questionnaire (IW-SP) is a three-item patient-reported outcome measure (PROM) instrument assessing the impact of body weight on self-perception. To date no published threshold for meaningful change exists. The objective of this study was to estimate the minimal important change (MIC) for the IW-SP among people with type 2 diabetes. METHODS: Responder analyses were conducted using anchor- and distribution-based approaches with existing clinical trial data (SURPASS-2). As SURPASS-2 did not include a priori anchors, a set of alternative exploratory anchors were identified based on the MICs and items from two conceptually related measures used in the trial as well as percent change in body weight. Exploratory anchors with change estimates that were sufficiently related to change in IW-SP (r ≥ 0.30) and were not redundant with other anchors were retained for the MIC analyses. The analyses were conducted in two stages (estimation = 2/3 of sample) to derive initial IW-SP MIC estimates, and a subsequent confirmation stage (remaining 1/3 of sample). RESULTS: While the most conceptually related anchors and items performed best in responsiveness analyses, all anchors resulted in a similar estimate of minimal meaningful change for the IW-SP total score: a 1-point change in raw units (1-5-point scale), corresponding to a 25-point change for transformed scores (0-100 scale). Distribution-based analyses supported these MIC estimates. Results were similar across both stages for all analyses. CONCLUSION: The MIC for the IW-SP for patients with T2D is a 25-point change on the transformed score.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Calidad de Vida/psicología , Encuestas y Cuestionarios , Peso Corporal , Autoimagen
4.
Front Immunol ; 14: 1150754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359545

RESUMEN

Introduction: This timely study assesses the immunosuppressive effects of surgery on cytotoxic Th1-like immunity and investigates if immune checkpoint blockade (ICB) can boost Th1-like immunity in the perioperative window in upper gastrointestinal cancer (UGI) patients. Methods: PBMCs were isolated from 11 UGI patients undergoing tumour resection on post-operative days (POD) 0, 1, 7 and 42 and expanded ex vivo using anti-CD3/28 and IL-2 for 5 days in the absence/presence of nivolumab or ipilimumab. T cells were subsequently immunophenotyped via flow cytometry to determine the frequency of T helper (Th)1-like, Th1/17-like, Th17-like and regulatory T cell (Tregs) subsets and their immune checkpoint expression profile. Lymphocyte secretions were also assessed via multiplex ELISA (IFN-γ, granzyme B, IL-17 and IL-10). The 48h cytotoxic ability of vehicle-, nivolumab- and ipilimumab-expanded PBMCs isolated on POD 0, 1, 7 and 42 against radiosensitive and radioresistant oesophageal adenocarcinoma tumour cells (OE33 P and OE33 R) was also examined using a cell counting kit-8 (CCK-8) assay to determine if surgery affected the killing ability of lymphocytes and whether the use of ICB could enhance cytotoxicity. Results: Th1-like immunity was suppressed in expanded PBMCs in the immediate post-operative setting. The frequency of expanded circulating Th1-like cells was significantly decreased post-operatively accompanied by a decrease in IFN-γ production and a concomitant increase in the frequency of expanded regulatory T cells with an increase in circulating levels of IL-10. Interestingly, PD-L1 and CTLA-4 immune checkpoint proteins were also upregulated on expanded Th1-like cells post-operatively. Additionally, the cytotoxic ability of expanded lymphocytes against oesophageal adenocarcinoma tumour cells was abrogated post-surgery. Of note, the addition of nivolumab or ipilimumab attenuated the surgery-mediated suppression of lymphocyte cytotoxicity, demonstrated by a significant increase in tumour cell killing and an increase in the frequency of Th1-like cells and Th1 cytokine production. Conclusion: These findings support the hypothesis of a surgery-mediated suppression in Th1-like cytotoxic immunity and highlights a rationale for the use of ICB within the perioperative setting to abrogate tumour-promoting effects of surgery and ameliorate the risk of recurrence.


Asunto(s)
Adenocarcinoma , Interleucina-10 , Humanos , Receptor de Muerte Celular Programada 1 , Nivolumab/uso terapéutico , Ipilimumab , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/cirugía , Terapia de Inmunosupresión
5.
Methods Mol Biol ; 2645: 139-152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37202615

RESUMEN

Radiation therapy is a cornerstone of cancer treatment worldwide. Unfortunately, in many cases, it does not control tumor growth, and many tumors display treatment resistance. The molecular pathways leading to treatment resistance in cancer have been subject to research for many years. Isogenic cell lines with divergent radiosensitivities are an extremely useful tool to study the molecular mechanisms that underpin radioresistance in cancer research, as they reduce the genetic variation that is present in patient samples and cell lines of different origin, thus allowing the elucidation of molecular determinants of radioresponse. Here, we describe the process of generating an in vitro isogenic model of radioresistant esophageal adenocarcinoma by chronic irradiation of esophageal adenocarcinoma cells with clinically relevant doses of X-ray radiation. We also characterize cell cycle, apoptosis, reactive oxygen species (ROS) production, DNA damage and repair in this model to investigate the underlying molecular mechanisms of radioresistance in esophageal adenocarcinoma.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Línea Celular Tumoral , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Adenocarcinoma/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patología , Tolerancia a Radiación/genética , Apoptosis/efectos de la radiación
6.
Clin Exp Med ; 23(2): 411-425, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364779

RESUMEN

The majority of oesophageal adenocarcinoma (OAC) patients do not respond to multimodal treatment regimens and face dismal survival rates. Natural killer (NK) cells are crucial anti-tumour immune cells, and this study investigated the susceptibility of treatment-resistant OAC cells to these potent tumour killers. Natural killer receptor (NKR) ligand expression by OE33CisP (cisplatin-sensitive) and OE33CisR (cisplatin-resistant) cells was investigated. The immunomodulatory effects of OE33CisP and OE33CisR cells on NK cell phenotype and function were assessed. Finally, the impact of chemotherapy regimens on NKR ligand shedding was examined. Our data revealed significantly less surface expression of activating ligands B7-H6, MICA/B, ULBP-3 and activating/inhibitory ligands PVRL-1 and PVRL-4 by OE33CisR cells, compared to OE33CisP cells. Co-culture with OE33CisR cells reduced the frequencies of NKp30+ and NKp46+ NK cells and increased frequencies of TIGIT+, FasL+ and TRAIL+ NK cells. Frequencies of IFN-γ-producing NK cells increased while frequencies of TIM-3+ NK cells decreased after culture with OE33CisP and OE33CisR cells. Frequencies of circulating NKp30+ NK cells were significantly lower in OAC patients with the poorest treatment response and in patients who received FLOT chemotherapy, while B7-H6 shedding by OAC tumour cells was induced by FLOT. Overall, OE33CisR cells express less activating NKR ligands than OE33CisP cells and have differential effects on NKR expression by NK cells. However, neither cell line significantly dampened NK cell cytokine production, death receptor expression or degranulation. In addition, our data indicate that FLOT chemotherapy may promote B7-H6 shedding and immune evasion with detrimental consequences in OAC patients.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Cisplatino , Ligandos , Células Asesinas Naturales , Neoplasias Esofágicas/tratamiento farmacológico
7.
Rheumatol Ther ; 10(1): 95-115, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36227531

RESUMEN

INTRODUCTION: The Profile of Fatigue and Discomfort-Sicca Symptoms Inventory-Short Form (PROFAD-SSI-SF) is a 19-item patient-reported outcome (PRO) measure to assess pain, fatigue, and dryness in patients with primary Sjögren's syndrome (pSS). This analysis identified concepts important to measure, and evaluated the content validity and measurement properties of the PROFAD-SSI-SF, in patients with pSS. METHODS: Qualitative analyses (GSK Study 208396) used transcripts from an online concept elicitation (CE) discussion forum with patients with pSS and interviews with key opinion leaders (KOLs) to finalize a disease model depicting important concepts for patients with pSS. Cognitive debriefing (CD) interviews with patients with pSS were conducted to further evaluate the content validity of the PROFAD-SSI-SF. Quantitative analyses (GSK Study 213253) used post hoc analyses of blinded data from a phase 2 trial to assess PROFAD-SSI-SF measurement properties. RESULTS: The CE discussion forum (N = 46) revealed dryness (oral 87.0%, ocular 73.9%, cutaneous 37.0%, vaginal 23.9%, nasal 15.2%, otic 6.5%), pain (89.1%), and fatigue (87.0%) as the most reported symptoms. KOLs (N = 5) found the concepts identified in the disease model accurate and understandable, and confirmed that PROs used in pSS studies should focus on dryness, joint pain, and fatigue. In the CD interviews (N = 20), of the 19 participants asked, all found the PROFAD-SSI-SF easy to understand, and 14/19 items were considered relevant by ≥ 18/20 participants. The quantitative analyses found an acceptable fit of the PROFAD-SSI-SF factor structure, with adequate internal consistency, test-retest reliability, convergent validity with other PRO measures, known-groups validity with Patient Global Assessment, and ability to detect change in patients with pSS. CONCLUSION: The final disease model confirmed that the PROFAD-SSI-SF assesses concepts that are relevant and important to patients with pSS. Our findings support the content validity and measurement properties of the PROFAD-SSI-SF as a fit-for-purpose PRO measure appropriate for use in clinical trials in patients with pSS. CLINICAL TRIAL REGISTRATION NUMBER FOR THE PHASE 2 TRIAL: Clinicaltrials.gov NCT02631538.


Primary Sjögren's syndrome (pSS) is a disease where the immune system attacks the body, causing a number of symptoms, most notably dryness (sicca) of the eyes and mouth. The Profile of Fatigue and Discomfort­Sicca Symptoms Inventory­Short Form (PROFAD-SSI-SF) is a questionnaire for patients with pSS that asks about their symptoms. This paper evaluates how relevant the PROFAD-SSI-SF questions are to patients with pSS, and how consistently and accurately the questionnaire can measure changes in their symptoms. We reviewed information about the symptoms and impacts of pSS from an online discussion forum for patients with pSS. Patients said that dryness, fatigue, and pain were the symptoms that most affected their day-to-day lives and well-being. We combined this information with previous research on pSS to design a diagram explaining the key symptoms and day-to-day impacts of pSS, which was reviewed by five experts in pSS. In doing so, we aimed to confirm whether the most important things to patients about living with pSS are asked in the PROFAD-SSI-SF questionnaire. Next, we asked 20 patients with pSS how easy they found the PROFAD-SSI-SF to complete and if any important concepts were missing; they reported that the PROFAD-SSI-SF was easy to fill in and that the important questions were included. Finally, we looked at data from a clinical trial that used the PROFAD-SSI-SF and found it accurately measures changes in symptoms of patients with pSS. This means that the PROFAD-SSI-SF could be used in clinical trials to help assess new medicines for pSS.

8.
J Cancer Res Clin Oncol ; 149(7): 3753-3774, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35986757

RESUMEN

Combining immunostimulatory chemotherapies with immunotherapy is an attractive strategy to enhance treatment responses in oesophagogastric junctional adenocarcinoma (OGJ). This study investigates the immunostimulatory properties of FLOT, CROSS and MAGIC chemotherapy regimens in the context of OGJ using in vitro and ex vivo models of the treatment-naïve and post-chemotherapy treated tumour microenvironment. FLOT and CROSS chemotherapy regimens increased surrogate markers of immunogenic cell death (HMGB1 and HLA-DR), whereas the MAGIC treatment regimen decreased HMGB1 and HLA-DR on OGJ cells (markedly for epirubicin). Tumour-infiltrating and circulating T cells had significantly lower CD27 expression and significantly higher CD69 expression post-FLOT and post-CROSS treatment. Similarly, the supernatant from FLOT- and CROSS-treated OGJ cell lines and from FLOT- and CROSS-treated OGJ biopsies cultured ex vivo also decreased CD27 and increased CD69 expression on T cells. Following 48 h treatment with post-FLOT and post-CROSS tumour conditioned media the frequency of CD69+ T cells in culture negatively correlated with the levels of soluble immunosuppressive pro-angiogenic factors in the conditioned media from ex vivo explants. Supernatant from FLOT- and CROSS-treated OGJ cell lines also increased the cytotoxic potential of healthy donor T cells ex vivo and enhanced OGJ patient-derived lymphocyte mediated-killing of OE33 cells ex vivo. Collectively, this data demonstrate that FLOT and CROSS chemotherapy regimens possess immunostimulatory properties, identifying these chemotherapy regimens as rational synergistic partners to test in combination with immunotherapy and determine if this combinatorial approach could boost anti-tumour immunity in OGJ patients and improve clinical outcomes.


Asunto(s)
Adenocarcinoma , Proteína HMGB1 , Humanos , Proteína HMGB1/uso terapéutico , Medios de Cultivo Condicionados , Linfocitos T/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Inmunoterapia , Microambiente Tumoral
9.
Cells ; 11(15)2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892591

RESUMEN

Radioresistance remains a significant challenge in treating pancreatic ductal adenocarcinoma (PDAC), contributing to the poor survival rates of this cancer. MicroRNAs (miRs) are small non-coding RNA molecules that may play an essential role in regulating radioresistance by altering the levels of oxidative stress. In this study, we investigated the role and potential mechanisms linking miR-31 to PDAC radioresistance. A pCMV-miR vector containing a miR-31 mimic was stably expressed into a miR-31-deficient PDAC cell line, BxPC-3. Additionally, a pmiRZip lentivector suppressing miR-31 was stably expressed in a miR-31 abundant PDAC cell line, Panc-1. Clonogenic assays were conducted to explore the role of miR-31 manipulation on radiosensitivity. Fluorometric ROS assays were performed to quantify ROS levels. The expression of potential miR-31 targets was measured by Western blot analysis. It was found that the manipulation of miR-31 altered the radiosensitivity in PDAC cells by regulating oxidative stress. Using online bioinformatics tools, we identified the 3'UTR of GPx8 as a predicted target of miR-31. Our study demonstrates, for the first time, that manipulating miR-31 alters GPx8 expression, regulating ROS detoxification and promoting either a radioresistant or radiosensitive phenotype. MiR-31 may represent a promising therapeutic target for altering radiosensitivity in PDAC cells.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/radioterapia , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Estrés Oxidativo/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Peroxidasas/metabolismo , Tolerancia a Radiación/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pancreáticas
10.
World J Gastroenterol ; 28(21): 2302-2319, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35800186

RESUMEN

BACKGROUND: In the contemporary era of cancer immunotherapy, an abundance of clinical and translational studies have reported radiotherapy (RT) and immunotherapies as a viable option for immunomodulation of many cancer subtypes, with many related clinical trials ongoing. In locally advanced disease, chemotherapy or chemoradiotherapy followed by surgical excision of the tumour remain the principal treatment strategy in oesophageal adenocarcinoma (OAC), however, the use of the host immune system to improve anti-tumour immunity is rapidly garnering increased support in the curative setting. AIM: To immunophenotype OAC patients' immune checkpoint (IC) expression with and without radiation and evaluate the effects of checkpoint blockade on cell viability. METHODS: In the contemporary era of cancer immunotherapy, an abundance of studies have demonstrated that combination RT and IC inhibitors (ICIs) are effective in the immunomodulation of many cancer subtypes, with many related clinical trials ongoing. Although surgical excision and elimination of tumour cells by chemotherapy or chemoradiotherapy remains the gold standard approach in OAC, the propagation of anti-tumour immune responses is rapidly garnering increased support in the curative setting. The aim of this body of work was to immunophenotype OAC patients' IC expression with and without radiation and to establish the impact of checkpoint blockade on cell viability. This study was a hybrid combination of in vitro and ex vivo models. Quantification of serum immune proteins was performed by enzyme-linked immunosorbent assay. Flow cytometry staining was performed to evaluate IC expression for in vitro OAC cell lines and ex vivo OAC biopsies. Cell viability in the presence of radiation with and without IC blockade was assessed by a cell counting kit-8 assay. RESULTS: We identified that conventional dosing and hypofractionated approaches resulted in increased IC expression (PD-1, PD-L1, TIM3, TIGIT) in vitro and ex vivo in OAC. There were two distinct subcohorts with one demonstrating significant upregulation of ICs and the contrary in the other cohort. Increasing IC expression post RT was associated with a more aggressive tumour phenotype and adverse features of tumour biology. The use of anti-PD-1 and anti-PD-L1 immunotherapies in combination with radiation resulted in a significant and synergistic reduction in viability of both radiosensitive and radioresistant OAC cells in vitro. Interleukin-21 (IL-21) and IL-31 significantly increased, with a concomitant reduction in IL-23 as a consequence of 4 Gray radiation. Similarly, radiation induced an anti-angiogenic tumour milieu with reduced expression of vascular endothelial growth factor-A, basic fibroblast growth factor, Flt-1 and placental growth factor. CONCLUSION: The findings of the current study demonstrate synergistic potential for the use of ICIs and ionising radiation to potentiate established anti-tumour responses in the neoadjuvant setting and is of particular interest in those with advanced disease, adverse features of tumour biology and poor treatment responses to conventional therapies.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Femenino , Humanos , Factor de Crecimiento Placentario , Factor A de Crecimiento Endotelial Vascular
11.
ACR Open Rheumatol ; 4(9): 760-770, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35708944

RESUMEN

OBJECTIVE: To determine if single-nucleotide polymorphisms (SNPs) in DNA repair genes are enriched in individuals with systemic lupus erythematosus (SLE) and if they are sufficient to confer a disease phenotype in a mouse model. METHODS: Human exome chip data of 2499 patients with SLE and 1230 healthy controls were analyzed to determine if variants in 10 different mismatch repair genes (MSH4, EXO1, MSH2, MSH6, MLH1, MSH3, POLH, PMS2, ML3, and APEX2) were enriched in individuals with SLE. A mouse model of the MSH6 SNP, which was found to be enriched in individuals with SLE, was created using CRISPR/Cas9 gene targeting. Wildtype mice and mice heterozygous and homozygous for the MSH6 variant were then monitored for 2 years for the development of autoimmune phenotypes, including the presence of high levels of antinuclear antibodies (ANA). Additionally, somatic hypermutation frequencies and spectra of the intronic region downstream of the VH J558-rearranged JH4 immunoglobulin gene was characterized from Peyer's patches. RESULTS: Based on the human exome chip data, the MSH6 variant (rs63750897, p.Ser503Cys) is enriched among patients with SLE versus controls after we corrected for ancestry (odds ratio = 8.39, P = 0.0398). Mice homozygous for the MSH6 variant (Msh6S502C/S502C ) harbor significantly increased levels of ANA. Additionally, the Msh6S502C/S502C mice display a significant increase in the infiltration of CD68+ cells (a marker for monocytes and macrophages) into the lung alveolar space as well as apoptotic cells. Furthermore, characterization of somatic hypermutation in these mice reveals an increase in the DNA polymerase η mutational signature. CONCLUSION: An MSH6 mutation that is enriched in humans diagnosed with lupus was identified. Mice harboring this Msh6 mutation develop increased autoantibodies and an inflammatory lung disease. These results suggest that the human MSH6 variant is linked to the development of SLE.

12.
PLoS One ; 17(4): e0267913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35486639

RESUMEN

Systemic lupus erythematosus is a chronic disease characterized by autoantibodies, renal and cutaneous disease, and immune complex formation. Emerging evidence suggests that aberrant DNA repair is an underlying mechanism of lupus development. We previously showed that the POLBY265C/C mutation, which results in development of an aberrant immune repertoire, leads to lupus-like disease in mice. To address whether the hematopoietic compartment is sufficient for lupus development, we transplanted bone marrow cells from POLBY265C/C and POLB+/+ into wild-type congenic mice. Only mice transplanted with the POLBY265C/C bone marrow develop high levels of antinuclear antibodies and renal disease. In conclusion, we show that the hematopoietic compartment harvested from the POLBY265C/C mice is sufficient for development of autoimmune disease.


Asunto(s)
ADN Polimerasa beta/metabolismo , Lupus Eritematoso Sistémico , Animales , Anticuerpos Antinucleares/genética , Autoanticuerpos/genética , Lupus Eritematoso Sistémico/genética , Ratones , Mutación
13.
Transl Oncol ; 20: 101406, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35366537

RESUMEN

Response rates to immune checkpoint blockade (ICB) remain low in oesophageal adenocarcinoma (OAC). Combining ICB with immunostimulatory chemotherapies to boost response rates is an attractive approach for converting 'cold' tumours into 'hot' tumours. This study profiled immune checkpoint (IC) expression on circulating and tumour-infiltrating T cells in OAC patients and correlated these findings with clinical characteristics. The effect of first-line chemotherapy regimens (FLOT and CROSS) on anti-tumour T cell immunity was assessed to help guide design of ICB and chemotherapy combinations in the first-line setting. The ability of ICB to enhance lymphocyte-mediated cytolysis of OAC cells in the absence and presence of post-FLOT and post-CROSS chemotherapy tumour cell secretome was assessed by a CCK-8 assay. Expression of ICs on T cells positively correlated with higher grade tumours and a subsequent poor response to neoadjuvant treatment. First-line chemotherapy regimens substantially altered IC expression profiles of T cells increasing PD-1, A2aR, KLRG-1, PD-L1, PD-L2 and CD160 and decreasing TIM-3 and LAG-3. In addition, pro-inflammatory T cell cytokine profiles were enhanced by first-line chemotherapy regimens. T cell activation status was significantly altered; both chemotherapy regimens upregulated co-stimulatory markers ICOS and CD69 yet downregulated co-stimulatory marker CD27. However, ICB attenuated chemotherapy-induced downregulation of CD27 on T cells and promoted differentiation of effector memory T cells into a terminally differentiated state. Importantly, dual nivolumab-ipilimumab treatment increased lymphocyte-mediated cytolysis of OAC cells, an effect further enhanced in the presence of post-FLOT tumour cell secretome. These findings justify a rationale to administer ICBs concurrently with first-line chemotherapies.

14.
Transl Oncol ; 19: 101381, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35245832

RESUMEN

Recent studies have demontrated that immune checkpoint receptors are expressed on the surface of oesophageal adenocarcinoma (OAC) cells and might confer a survival advantage. This study explores the role of PD-1 and TIGIT signalling in OAC cells in either promoting or inhibiting the survival of OAC cells under characteristic features of the tumour microenvironment including nutrient-deprivation and hypoxia. PD-1 and TIGIT are expressed in normal and pre-malignant oesophageal epithelial cells and this expression significantly decreases along the normal- Barrett's Oesophagus- OAC disease sequence. However, glucose-deprivation and hypoxia significantly upregulated PD-1 and TIGIT on the surface of OAC cells in vitro. PD-1 blockade decreased OAC cell proliferation under normoxia but enhanced proliferation and decreased cell death in OAC cells under hypoxia and glucose-deprivation. TIGIT blockade decreased proliferation and induced OAC cell death, an effect that was maintained under nutrient-deprivation and hypoxia. Basal respiration and glycolytic reserve were enhanced and GLUT1 was upregulated on the surface of a subpopulation of OAC cells following PD-1 blockade. In contrast, TIGIT blockade enhanced a glycolytic phenotype in OAC cells, yet decreased other metabolic parameters including oxidative phosphorylation and basal respiration. Interestingly, inhibition of oxidative phosphorylation significantly upregulated TIGIT expression and inhibition of oxidative phosphorylation and glycolysis significantly decreased PD-1 on the surface of a subpopulation of OAC cells in vitro. These findings suggest an immune-independent mechanism for PD-1 inhibitor resistance in hypoxic tumours and suggest that TIGIT might be a more effective therapeutic target in OAC compared with PD-1 for treating hypoxic tumours.

15.
Sci Rep ; 12(1): 3259, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228614

RESUMEN

Chemotherapy upregulates immune checkpoint (IC) expression on the surface of tumour cells and IC-intrinsic signalling confers a survival advantage against chemotherapy in several cancer-types including oesophageal adenocarcinoma (OAC). However, the signalling pathways mediating chemotherapy-induced IC upregulation and the mechanisms employed by ICs to protect OAC cells against chemotherapy remain unknown. Longitudinal profiling revealed that FLOT-induced IC upregulation on OE33 OAC cells was sustained for up to 3 weeks post-treatment, returning to baseline upon complete tumour cell recovery. Pro-survival MEK signalling mediated FLOT-induced upregulation of PD-L1, TIM-3, LAG-3 and A2aR on OAC cells promoting a more immune-resistant phenotype. Single agent PD-1, PD-L1 and A2aR blockade decreased OAC cell viability, proliferation and mediated apoptosis. Mechanistic insights demonstrated that blockade of the PD-1 axis decreased stem-like marker ALDH and expression of DNA repair genes. Importantly, combining single agent PD-1, PD-L1 and A2aR blockade with FLOT enhanced cytotoxicity in OAC cells. These findings reveal novel mechanistic insights into the immune-independent functions of IC-intrinsic signalling in OAC cells with important clinical implications for boosting the efficacy of the first-line FLOT chemotherapy regimen in OAC in combination with ICB, to not only boost anti-tumour immunity but also to suppress IC-mediated promotion of key hallmarks of cancer that drive tumour progression.


Asunto(s)
Adenocarcinoma , Antígeno B7-H1 , Neoplasias Esofágicas , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Sinergismo Farmacológico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Regulación hacia Arriba
16.
Mol Cancer Ther ; 21(3): 440-447, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35027482

RESUMEN

There is a need for prognostic markers to select patients most likely to benefit from antibody-drug conjugate (ADC) therapy. We quantified the relationship between pretreatment PET imaging of glycoprotein nonmetastatic melanoma B (gpNMB) with 89Zr-labeled anti-gpNMB antibody ([89Zr]ZrDFO-CR011) and response to ADC therapy (CDX-011) in triple-negative breast cancer. First, we compared different PET imaging metrics and found that standardized uptake values (SUV) and tumor-to-heart SUV ratios were sufficient to delineate differences in radiotracer uptake in the tumor of four different cell- and patient-derived tumor models and achieved high standardized effect sizes. These tumor models with varying levels of gpNMB expression were imaged with [89Zr]ZrDFO-CR011 followed by treatment with a single bolus injection of CDX-011. The percent change in tumor volume relative to baseline (% CTV) was then correlated with SUVmean of [89Zr]ZrDFO-CR011 uptake in the tumor. All gpNMB-positive tumor models responded to CDX-011 over 6 weeks of treatment, except one patient-derived tumor regrew after 4 weeks of treatment. As expected, the gpNMB-negative tumor increased in volume by 130 ± 59% at endpoint. The magnitude of pretreatment SUV had the strongest inverse correlation with the % CTV at 2-4 weeks after treatment with CDX-011 (Spearman ρ = -0.8). However, pretreatment PET imaging with [89Zr]ZrDFO-CR011 did not inform on which tumor types will regrow over time. Other methods will be needed to predict resistance to treatment.


Asunto(s)
Melanoma , Neoplasias de la Mama Triple Negativas , Glicoproteínas , Humanos , Melanoma/tratamiento farmacológico , Glicoproteínas de Membrana , Tomografía de Emisión de Positrones , Radioisótopos/uso terapéutico , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Circonio/uso terapéutico
17.
Cancer Res Commun ; 2(10): 1229-1243, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36969742

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate below 5%. Carbohydrate antigen 19-9 (CA19-9) is the most commonly used blood-based biomarker for PDAC in current clinical practice, despite having been shown repeatedly to be inaccurate and have poor diagnostic performance. This review aims to assess the reported diagnostic accuracy of all blood-based biomarkers investigated to date in PDAC, by directly comparing individual biomarkers and multi-biomarker panels, both containing CA19-9 and not (novel). A systematic review was conducted in accordance with PRISMA standards in July 2020. Individualized search strategies for three academic databases identified 5,885 studies between the years 1973 and 2020. After two rounds of screening, 250 studies were included. Data were extracted and assessed for bias. A multivariate three-level meta-analysis with subgroup moderators was run in R using AUC values as effect size. On the basis of this model, the pooled AUC value for all multi-biomarker panels (AUC = 0.898; 95% confidence interval (CI): 0.88-0.91) was significantly higher than all single biomarkers (AUC = 0.803; 95% CI: 0.78-0.83; P < 0.0001). The pooled AUC value for CA19-9 alone was significantly lower compared with the multi-biomarker panels containing CA19-9 (P < 0.0001). For the novel biomarkers, the pooled AUC for single biomarkers was also significantly lower compared with multi-biomarker panels (P < 0.0001). Novel biomarkers that have been repeatedly examined across the literature, such as TIMP-1, CEA, and CA125, are highlighted as promising. These results suggest that CA19-9 may be best used as an addition to a panel of biomarkers rather than alone, and that multi-biomarker panels generate the most robust results in blood-based PDAC diagnosis. Significance: In a systematic review and three-level multivariate meta-analysis, it is shown for the first time that blood-based multi-biomarker panels for the diagnosis of PDAC exhibit superior performance in comparison with single biomarkers. CA19-9 is demonstrated to have limited utility alone, and to perform poorly in patient control cohorts of both healthy and benign individuals. Multi-biomarker panels containing CA19-9 produce the best diagnostic performance overall.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Estudios de Casos y Controles , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico , Neoplasias Pancreáticas
18.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819374

RESUMEN

Cancer cells can develop an immunosuppressive tumor microenvironment to control tumor-infiltrating lymphocytes. The underlying mechanisms still remain unclear. Here, we report that mouse and human colon cancer cells acquire lymphocyte membrane proteins including cellular markers such as CD4 and CD45. We observed cell populations harboring both a tumor-specific marker and CD4 in the tumor microenvironment. Sorted cells from these populations were capable of forming organoids, identifying them as cancer cells. Live imaging analysis revealed that lymphocyte membrane proteins were transferred to cancer cells via trogocytosis. As a result of the transfer in vivo, cancer cells also acquired immune regulatory surface proteins such as CTLA4 and Tim3, which suppress activation of immune cells [T. L. Walunas et al, Immunity 1, 405-413 (1994) and L. Monney et al., Nature 415, 536-541 (2002)]. RNA sequencing analysis of ex vivo-cocultured splenocytes with trogocytic cancer cells showed reductions in Th1 activation and natural killer cell signaling pathways compared with the nontrogocytic control. Cancer cell trogocytosis was confirmed in the patient-derived xenograft models of colorectal cancer and head and neck cancer. These findings suggest that cancer cells utilize membrane proteins expressed in lymphocytes, which in turn contribute to the development of the immunosuppressive tumor microenvironment.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Antígeno CTLA-4/metabolismo , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Linfocitos Infiltrantes de Tumor/citología , Animales , Células CACO-2 , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Madre Hematopoyéticas/citología , Humanos , Sistema Inmunológico , Inmunosupresores , Células Jurkat , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Organoides/metabolismo , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Trogocitosis , Microambiente Tumoral
19.
Front Psychol ; 12: 667359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335378

RESUMEN

Face recognition is impaired in autism spectrum disorders (ASDs), but the reason for this remains unclear. One possibility is that impairments in the ability to visually detect faces might be a factor. As a preliminary study in this vein, we measured face detection ability as a function of visual contrast level in 13 individuals with ASD, aged 13-18, and 18 neurotypical controls (NCs) in the same age range. We also measured contrast sensitivity, using sinusoidal grating stimuli, as a control task. Individuals with ASD did not differ from controls in face detection (p > 0.9) or contrast detection (p > 0.2) ability. Performance on contrast and face detection was significantly correlated in ASD but not in NC. Results suggest that the ability to visually detect faces is not altered in ASD overall, but that alterations in basic visual processing may affect face detection ability in some individuals with ASD.

20.
Biomedicines ; 9(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34440228

RESUMEN

Gastrointestinal (GI) malignancies are a major global health burden, with high mortality rates. The identification of novel therapeutic strategies is crucial to improve treatment and survival of patients. The poly (ADP-ribose) polymerase (PARP) enzymes involved in the DNA damage response (DDR) play major roles in the development, progression and treatment response of cancer, with PARP inhibitors (PARPi) currently used in the clinic for breast, ovarian, fallopian, primary peritoneal, pancreatic and prostate cancers with deficiencies in homologous recombination (HR) DNA repair. This article examines the current evidence for the role of the DDR PARP enzymes (PARP1, 2, 3 and 4) in the development, progression and treatment response of GI cancers. Furthermore, we discuss the role of HR status as a predictive biomarker of PARPi efficacy in GI cancer patients and examine the pre-clinical and clinical evidence for PARPi and cytotoxic therapy combination strategies in GI cancer. We also include an analysis of the genomic and transcriptomic landscape of the DDR PARP genes and key HR genes (BRCA1, BRCA2, ATM, RAD51, MRE11, PALB2) in GI patient tumours (n = 1744) using publicly available datasets to identify patients that may benefit from PARPi therapeutic approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...