Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Rev Anal Chem ; : 1-11, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672314

RESUMEN

Retention prediction through Artificial intelligence (AI)-based techniques has gained exponential growth due to their abilities to process complex sets of data and ease the crucial task of identification and separation of compounds in most employed chromatographic techniques. Numerous approaches were reported for retention prediction in different chromatographic techniques, and consistent results demonstrated that the accuracy and effectiveness of deep learning models outclassed the linear machine learning models, mainly in liquid and gas chromatography, as ML algorithms use fewer complex data to train and predict information. Support Vector machine-based neural networks were found to be most utilized for the prediction of retention factors of different compounds in thin-layer chromatography. Cheminformatics, chemometrics, and hybrid approaches were also employed for the modeling and were more reliable in retention prediction over conventional models. Quantitative Structure Retention Relationship (QSRR) was also a potential method for predicting retention in different chromatographic techniques and determining the separation method for analytes. These techniques demonstrated the aids of incorporating QSRR with AI-driven techniques acquiring more precise retention predictions. This review aims at recent exploration of different AI-driven approaches employed for retention prediction in different chromatographic techniques, and due to the lack of summarized literature, it also aims at providing a comprehensive literature that will be highly useful for the society of scientists exploring the field of AI in analytical chemistry.

2.
Anal Methods ; 15(23): 2785-2797, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37264667

RESUMEN

Artificial intelligence (AI) and machine learning (ML) gained tremendous growth and are rapidly becoming popular in various fields of prediction due to their potential abilities, accuracy, and speed. Machine learning algorithms employ historical data to analyze or predict information using patterns or trends. AI and ML were most employed in chromatographic predictions and particularly attractive options for liquid chromatography method development, as they can help achieve desired results faster, more accurately, and more efficiently. This review aims at exploring various AI and ML models employed in the determination of chromatographic characteristics. This review also aims to provide deep insight into reported artificial neural network (ANN) associated techniques which maintained better accuracy and significant possibilities for chromatographic characteristics prediction in liquid chromatography over classical linear models and also emphasizes the integration of a fuzzy system with an ANN, as this integrated study provides more efficient and accurate methods in chromatographic prediction than other linear models. This study also focuses on the retention prediction of a target molecule employing QSRR methodology combined with an ANN, highlighting a more effective technique than the QSRR alone. This approach showed the benefits of combining AI or ML algorithms with the QSRR to obtain more accurate retention predictions, emphasizing the potential of artificial intelligence and machine learning for overcoming adversities in analytical chemistry.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Cromatografía Liquida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...