Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38676522

RESUMEN

BACKGROUND: Diabetic wound represents a serious issue with a substantial impact and an exceptionally complex pathology affecting patients' mental health and quality of life. So, we have developed a novel 3D organo-hydrogel nanocomposite of polydopamine/TiO2 nanoparticles and cu (PDA-TiO2@Cu) and examined its efficacy in diabetic wound healing. METHODS: Forty-five adult male albino rats were divided into normal control rats (non-diabetic rats with non-treated skin wounds), diabetic control rats (diabetic rats with non-treated skin wounds), and organo-hydrogel-treated rats (diabetic wounds treated with topically applied organo- hydrogel once daily). Macroscopic changes of the wound were observed on days 0, 3, 5, 7, and 10 to measure wound diameters. Skin specimens from the wound tissue were taken on days 3, 7, and 10, respectively, and examined histologically and immunohistochemically. Also, the gene expressions of collagen I, Matrix Metalloproteinase-9 (MMP-9), and Epidermal Growth Factor (EGF), and levels of Interleukin 6 (IL-6) and Superoxide Dismutase (SOD) were assessed. RESULTS: Our observed results indicated that the developed patch significantly accelerated the healing time compared to the normal control and diabetic control groups. Moreover, the patchloaded group revealed complete re-epithelization and a highly significant increase in the mean area % of CD31 immunostaining on day 7. The organo-hydrogel-loaded group displayed a significant decrease in gene expression of MMP-9 and a significant increase in gene expression of EGF and collagen I. Additionally, the organo-hydrogel-loaded group exhibited a significant decrease in levels of IL-6 and a significant increase in levels of SOD, compared to the normal diabetic control groups. CONCLUSION: The organo-hydrogel can be used for treating and decreasing the healing period of diabetic wounds.

2.
Int J Pharm ; 647: 123511, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37839495

RESUMEN

Colorectal cancer (CRC) is one of the most identified and deadly malignancies worldwide. It presents a serious challenge due to its quick growth, which finally culminates in severe malignancy. It is critical to improve the efficacy of berberine (BR) as an anticancer agent to overcome its limited bioavailability. Implementation of a novel, effective nanocarrier system of liponiosomes for BR (LipoNio.BR) can support mechanistic actions associated with its anti-CRC role. Following CRC induction in rats using 1,2 Dimethylhydrazine (40 mg DMH/kg/week), the potency and mechanistic actions of LipoNio.BR were assessed by evaluating the lesion severity and molecular mechanisms controlling oxidative stress, apoptosis, autophagy, and inflammatory responses, and conducting histopathological and immunohistochemistry examinations of colonic tissues. The results indicated that the severity of clinical signs comprising weight gain loss, increased diarrhea and rectal bleeding, and reduced survivability were greatly restored in the LipoNio.BR-treated group. LipoNio.BR remarkably reduced CRC development compared to FBR (free berberine), as it induced apoptosis via upregulating apoptotic genes (Bax and caspase3, increased up to 7.89 and 6.25-fold, respectively) and downregulating the anti-apoptotic gene Bcl-2 by 2.25-fold. LipoNio.BR mitigated the oxidative stress associated with CRC and maintained redox homeostasis. Notably, the excessive inflammatory response associated with CRC was prominently reduced following administration of LipoNio.BR [which decreased iterleukin (IL-B, IL-6), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA), follistatin, and activin BA (beta-A) expression]. LipoNio.BR modulated the expression of nuclear factor kappa B (NF-κB) and mammalian target of rapamycin (mTOR), which impacted tumor vascularity (decreased Vascular endothelial growth factor (VEGF) expression by 2.36-fold). The severity of the histopathological alterations in the colonic tissues, including the development of neoplastic epithelium and the invasion of some neoplastic masses, was greatly reduced in the LipoNio.BR group compared to the FBR-(free berberine) administrated group. Following CRC induction, immunohistochemical staining revealed that the overexpression of cyclin and COX-2 in colonic tissues were suppressed in the LipoNio.BR group. Taken together, these findings suggest that LipoNio.BR has a potential role in reducing CRC progression to a greater extent compared to free BR and could be considered a promising and potent therapy against CRC.


Asunto(s)
Berberina , Neoplasias Colorrectales , Ratas , Animales , Berberina/farmacología , Berberina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/farmacología , FN-kappa B/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/uso terapéutico , Apoptosis , Neoplasias Colorrectales/patología , Modelos Teóricos , Mamíferos/metabolismo
3.
Food Chem Toxicol ; 176: 113744, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36965644

RESUMEN

The terrible reality is that acrylamide (AA) is a common food contaminant found in a wide variety of commonly consumed foods. This research involves the advancement of a more dependable technique for the bio-fabrication of zinc oxide nanoparticles (ZNPs) through the green method using Moringa Oleifera extract (MO-ZNPs) as an efficient chelating agent for acrylamide (AA). The effects of AA on glutathione redox dynamics, liver function, lipid profile, and zinc residues in Sprague Dawley rats are investigated. Finally, the microarchitecture and immunohistochemical staining of Caspase-3 and CYP2E1 were determined in the liver tissue of rats. Four separate groups, including control, MO-ZNPs (10 mg/kg b. wt), AA (20 mg/kg b. wt), and AA + MO-ZNPs for 60 days. The results revealed a suppressed activity of glutathione redox enzymes (GSH, GPX,and GSR) on both molecular and biochemical levels. Also, AA caused elevated liver enzymes, hepatosomatic index, and immunohistochemical staining of caspase-3 and CYP2E1 expression. MO-ZNPs co-treatment, on the other hand, stabilized glutathione-related enzyme gene expression, normalized hepatocellular enzyme levels, and restored hepatic tissue microarchitectures. It could be assumed that MO-ZNPs is a promising hepatoprotective molecule for alleviating AA-induced hepatotoxicity. We witnessed changes in glutathione redox dynamics to be restorative. Glutathione and cytochrome P450 2E1 play crucial roles in AA detoxification, so maintaining a healthy glutathione redox cycle is necessary for disposing of AA toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Moringa oleifera , Óxido de Zinc , Ratas , Animales , Citocromo P-450 CYP2E1/metabolismo , Óxido de Zinc/farmacología , Moringa oleifera/química , Caspasa 3/metabolismo , Ratas Sprague-Dawley , Acrilamida/toxicidad , Glutatión/metabolismo , Antioxidantes/farmacología , Peroxidación de Lípido , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Estrés Oxidativo
4.
Pharmaceutics ; 14(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35745756

RESUMEN

Gut modulation by multi-strain probiotics (MSPs) is considered an effective strategy for treating inflammatory bowel disease (IBD). The combination of nanomaterial-based MSPs can improve their viability and resistance and can allow their targeted release in the gastrointestinal tract to be achieved. Thus, our aim is to investigate the prospective role of MSP integration into nanomaterials (MSPNPs) and the underlying molecular mechanisms supporting their application as an alternative therapy for IBD using a colitis rat model. To induce the colitis model, rats received 5% DSS, and the efficacy of disease progression after oral administration of MSPNPs was assessed by evaluating the severity of clinical signs, inflammatory response, expressions of tight-junction-related genes and NLRP3 inflammasome and caspase-1 genes, microbial composition and histopathological examination of colonic tissues. The oral administration of MSPNPs successfully alleviated the colonic damage induced by DSS as proved by the reduced severity of clinical signs and fecal calprotectin levels. Compared with the untreated DSS-induced control group, the high activities of colonic NO and MPO and serum CRP levels were prominently reduced in rats treated with MSPNPs. Of note, colonic inflammation in the group treated with MSPNPs was ameliorated by downstreaming NLRP3 inflammasome, caspase-1, IL-18 and IL-1ß expressions. After colitis onset, treatment with MSPNPs was more effective than that with free MSPs in restoring the expressions of tight-junction-related genes (upregulation of occludin, ZO-1, JAM, MUC and FABP-2) and beneficial gut microbiota. Interestingly, treatment with MSPNPs accelerated the healing of intestinal epithelium as detected in histopathological findings. In conclusion, the incorporation of MPSs into nanomaterials is recommended as a perspective strategy to overcome the challenges they face and augment their therapeutic role for treating of colitis.

5.
Biomolecules ; 12(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35625591

RESUMEN

The rate of chronic kidney disease (CKD) is increasing globally, and it is caused by continuous damage to kidney tissue. With time the renal damage becomes irreversible, leading to CKD development. In females, post-menopause lack of estrogen supply has been described as a risk factor for CKD development, and studies targeting post-menopause CKD are scarce. In the present study, we used exosomes isolated from bone marrow mesenchymal stem/stromal cells (BM-MSCs) to test their therapeutic potential against the development of CKD. At first, the menopause model was achieved by surgical bilateral ovariectomy in female albino rats. After that, 100 µg of exosomes was given to ovariectomized rats, and the study continued for 2 months. Changes in urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), kidney antioxidant parameters (SOD, GPx and CAT), histological changes, immunohistochemical levels of caspase 3, and the gene expression of NGAL (related to kidney damage), TGFß1 and αSMA (related to fibrosis and EMT), and caspase 3 (related to apoptosis) were studied. After the ovariectomy, the occurrence of CKD was confirmed in the rats by the drastic reduction of serum estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, reduced GPx SOD, and CAT in kidney tissue, degenerative and fibrotic lesions in the histopathological examination, higher immunohistochemical expression of caspase 3 and increased expression of all studied genes. After exosomes administration, the entire chronic inflammatory picture in the kidney was corrected, and a near-normal kidney structure and function were attained. This study shows for the first time that BM-MSCs exosomes are potent for reducing apoptosis and fibrosis levels and, thus, can reduce the chronic damage of the kidneys in females that are in their menopause period. Therefore, MSCs-derived exosomes should be considered a valuable therapy for preserving postmenopausal kidney structure and function and, subsequently, could improve the quality of females' life during menopause.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Insuficiencia Renal Crónica , Animales , Apoptosis , Caspasa 3/metabolismo , Estrógenos/metabolismo , Exosomas/metabolismo , Femenino , Fibrosis , Riñón/patología , Posmenopausia , Ratas , Insuficiencia Renal Crónica/metabolismo , Superóxido Dismutasa/metabolismo
6.
ESC Heart Fail ; 9(2): 800-811, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35118822

RESUMEN

Sodium-glucose cotransporter-2 inhibitor (SGLT2i) in patients with type 2 diabetes reduces the risk of serious heart failure events, specifically the risk of hospitalization for heart failure, and cardiovascular death. The benefit is most apparent in patients with a heart failure with reduced ejection fraction (HFrEF). Dapagliflozin and empagliflozin reduced the risk of cardiovascular death and hospitalizations for heart failure in patients with established HFrEF, including those without diabetes. Considering the magnitude of the problem and the expected benefit on the target population, an Egyptian consensus document was conducted to demonstrate the importance of and the critical knowledge needed for effective and safe implementation of SGLT2i in the daily practice for the management of patients with HFrEF.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Egipto , Testimonio de Experto , Glucosa , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Sodio , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Volumen Sistólico
7.
Rep Biochem Mol Biol ; 9(2): 230-240, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33178874

RESUMEN

BACKGROUND: We aimed to evaluate the effectiveness of Highly Upregulated in Liver Cancer (HULC) and microRNA-372 (miR-372) as biochemical markers in Hepatocellular carcinoma (HCC) and HCV-infected patients. METHODS: The present study was conducted on 100 Egyptian individuals divided into 3 groups, 40 patients with HCC and HCV infection, 40 patients only HCV-infected, and 20 individuals as normal controls. They were subject to full history taking, full clinical and laboratory examination, and assessment of HULC and miR-372 levels by real-time PCR. RESULTS: A statistically significant difference was found with p< 0.05 between HCC and each of HCV and control groups as regards HULC level with high mean among HCC followed by HCV patients. Our results also show a statistically significant difference with p< 0.05 between each of HCC and HCV compared to control as regards miR-372 level with low mean among HCC patients. CONCLUSION: HULC could be considered as a potential non-invasive marker for detection and early diagnosis of HCC. Also, it may play an important role in the early prophylaxis and control measures to reduce the incidence of HCC. However, miR-372 cannot be considered as a reliable marker as HULC for early detection of HCC especially in HCV patients.

8.
Acta Biol Hung ; 68(2): 137-149, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28605976

RESUMEN

In the present study, sodium azide (SA) toxicity and the anti-mutagenic effects of different algal extracts at 0.1% and 0.2% concentrations were studied on the mitotic index (MI), chromosomal and nuclear aberrations using Allium cepa L. root assay. Moreover, phytochemical screening of photosynthetic pigments, antioxidants compounds, total antioxidant, DPPH scavenging activity, polysaccharides, and phenolic contents were done for two red seaweeds (Laurencia obtusa (Hudson) Lamouroux and Polysiphonia morrowii Harvey) and for one brown seaweed (Dictyopteris delicatula Lamouroux). Treatment with 300 µg/ml sodium azide (SA) induced the highest number of aberrations in A. cepa root. A highly significant decrease in the MI appeared after treatment with SA, whereas its value increased following different algal extracts treatments. The highest anti-mutagenic inhibition activity of Dictyopteris delicatula added at 0.2% concentration was 72.96%, 69.84%, 56.89% and 43.59% with the algal polyphenol, polysaccharide, aqueous and methanol extract treatments, respectively. The different algal extracts minimized the genotoxicity and exhibited anti-mutagenic potential against SA in a dose-dependent manner. Phytochemical studies showed that Dictyopteris delicatula contained the highest total phenol, chlorophyll-a and carotenoid quantity. Moreover it exhibited the highest total antioxidant and DPPH scavenging activities. Total polysaccharides and the weight percentage of sulphated polysaccharides were relatively higher in Polysiphonia morrowii followed by Laurencia obtusa. Hydroquinone and bromophenol were detected only in the studied brown and red seaweeds, respectively. Polysiphonia morrowii and Laurencia obtusa contained the highest quantity of galactose, rhmnose and xylose, while Dictyopteris delicatula contained fucose and mannitol as main monosaccharide units. In conclusion, the studied seaweeds may be considered as rich sources of natural antioxidants. Meanwhile the investigated different algal extracts can minimize the genotoxicity in a dose-dependent manner and exhibit anti-mutagenic potential against the mutagenic substance sodium azide.


Asunto(s)
Antimutagênicos/farmacología , Aberraciones Cromosómicas/efectos de los fármacos , Cromosomas de las Plantas/genética , Depuradores de Radicales Libres/farmacología , Cebollas/genética , Extractos Vegetales/farmacología , Algas Marinas/química , Antimutagênicos/química , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Depuradores de Radicales Libres/química , Cebollas/metabolismo , Extractos Vegetales/química , Azida Sódica/química
9.
BMC Plant Biol ; 15: 183, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194497

RESUMEN

BACKGROUND: Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. RESULTS: A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. CONCLUSION: Transgenic wheat plants had improved resistance to Sitophilus granarius.


Asunto(s)
Proteínas Aviares/genética , Avidina/genética , Control Biológico de Vectores , Triticum/fisiología , Gorgojos , Animales , Proteínas Aviares/metabolismo , Avidina/metabolismo , Expresión Génica , Control de Insectos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...