Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659817

RESUMEN

Purpose: Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. Methods: We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Contrary to prior publications, the KO was not neonatal lethal. Thus, we phenotyped the Adam19 KO. Results: KO mice had lower body weight and shorter tibial length than wild type (WT). Dual-energy X-ray Absorptiometry indicated lower soft weight, fat weight, and bone mineral content in KO mice. In lung function analyses using flexiVent, compared to WT, Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. Conclusion: Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.

2.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37903626

RESUMEN

Members of the tristetraprolin (TTP) family of RNA-binding proteins can bind to and promote the decay of specific transcripts containing AU-rich motifs. ZFP36 (TTP) is best known for regulating pro-inflammatory cytokine expression in myeloid cells; however, its mammalian paralogues ZFP36L1 and ZFP36L2 have not been viewed as important in controlling inflammation. We knocked out these genes in myeloid cells in mice, singly and together. Single-gene myeloid-specific knockouts resulted in almost no spontaneous phenotypes. In contrast, mice with myeloid cell deficiency of all three genes developed severe inflammation, with a median survival of 8 wk. Macrophages from these mice expressed many more stabilized transcripts than cells from myeloid-specific TTP knockout mice; many of these encoded pro-inflammatory cytokines and chemokines. The failure of weight gain, arthritis, and early death could be prevented completely by two normal alleles of any of the three paralogues, and even one normal allele of Zfp36 or Zfp36l2 was enough to prevent the inflammatory phenotype. Our findings emphasize the importance of all three family members, acting in concert, in myeloid cell function.


Asunto(s)
Inflamación , Tristetraprolina , Ratones , Animales , Tristetraprolina/genética , Tristetraprolina/metabolismo , Inflamación/genética , Inflamación/metabolismo , Células Mieloides/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Citocinas/metabolismo , Mamíferos/metabolismo
3.
Toxicol Pathol ; 50(1): 60-117, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34872401

RESUMEN

The use of the mouse as a model organism is common in translational research. This mouse-human similarity holds true for placental development as well. Proper formation of the placenta is vital for development and survival of the maturing embryo. Placentation involves sequential steps with both embryonic and maternal cell lineages playing important roles. The first step in placental development is formation of the blastocyst wall (approximate embryonic days [E] 3.0-3.5). After implantation (∼E4.5), extraembryonic endoderm progressively lines the inner surface of the blastocyst wall (∼E4.5-5.0), forming the yolk sac that provides histiotrophic support to the embryo; subsequently, formation of the umbilical vessels (∼E8.5) supports transition to the chorioallantoic placenta and hemotrophic nutrition. The fully mature ("definitive") placenta is established by ∼E12.5. Abnormal placental development often leads to embryonic mortality, with the timing of death depending on when placental insufficiency takes place and which cells are involved. This comprehensive macroscopic and microscopic atlas highlights the key features of normal and abnormal mouse placental development from E4.5 to E18.5. This in-depth overview of a transient (and thus seldom-analyzed) developmental tissue should serve as a useful reference to aid researchers in identifying and describing mouse placental changes in engineered, induced, and spontaneous disease models.


Asunto(s)
Placenta , Placentación , Animales , Linaje de la Célula , Implantación del Embrión , Embrión de Mamíferos , Femenino , Ratones , Embarazo
4.
J Endocr Soc ; 6(9): bvac109, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37283844

RESUMEN

Nongenomic effects of estrogen receptor α (ERα) signaling have been described for decades. Several distinct animal models have been generated previously to analyze the nongenomic ERα signaling (eg, membrane-only ER, and ERαC451A). However, the mechanisms and physiological processes resulting solely from nongenomic signaling are still poorly understood. Herein, we describe a novel mouse model for analyzing nongenomic ERα actions named H2NES knock-in (KI). H2NES ERα possesses a nuclear export signal (NES) in the hinge region of ERα protein resulting in exclusive cytoplasmic localization that involves only the nongenomic action but not nuclear genomic actions. We generated H2NESKI mice by homologous recombination method and have characterized the phenotypes. H2NESKI homozygote mice possess almost identical phenotypes with ERα null mice except for the vascular activity on reendothelialization. We conclude that ERα-mediated nongenomic estrogenic signaling alone is insufficient to control most estrogen-mediated endocrine physiological responses; however, there could be some physiological responses that are nongenomic action dominant. H2NESKI mice have been deposited in the repository at Jax (stock no. 032176). These mice should be useful for analyzing nongenomic estrogenic responses and could expand analysis along with other ERα mutant mice lacking membrane-bound ERα. We expect the H2NESKI mouse model to aid our understanding of ERα-mediated nongenomic physiological responses and serve as an in vivo model for evaluating the nongenomic action of various estrogenic agents.

5.
Toxicol Pathol ; 48(7): 887-898, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32975498

RESUMEN

Exposure to ambient ozone has been associated with increased human mortality. Ozone exposure can introduce oxygen-containing functional groups in particulate matter (PM) effecting a greater capacity of the particle for metal complexation and inflammatory effect. We tested the postulate that (1) a fulvic acid-like substance can be produced through a reaction of a carbonaceous particle with high concentrations of ozone and (2) such a fulvic acid-like substance included in the PM can initiate inflammatory effects following exposure of respiratory epithelial (BEAS-2B) cells and an animal model (male Wistar Kyoto rats). Carbon black (CB) was exposed for 72 hours to either filtered air (CB-Air) or approximately 100 ppm ozone (CB-O3). Carbon black exposure to high levels of ozone produced water-soluble, fluorescent organic material. Iron import by BEAS-2B cells at 4 and 24 hours was not induced by incubations with CB-Air but was increased following coexposures of CB-O3 with ferric ammonium citrate. In contrast to CB-Air, exposure of BEAS-2B cells and rats to CB-O3 for 24 hours increased expression of pro-inflammatory cytokines and lung injury, respectively. It is concluded that inflammatory effects of carbonaceous particles on cells can potentially result from (1) an inclusion of a fulvic acid-like substance after reaction with ozone and (2) changes in iron homeostasis following such exposure.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/toxicidad , Animales , Benzopiranos , Humanos , Masculino , Ozono/toxicidad , Material Particulado/toxicidad , Ratas , Hollín/toxicidad
6.
Toxicol Pathol ; 48(6): 791-793, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32885747
7.
Environ Health Perspect ; 128(2): 27006, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32074459

RESUMEN

BACKGROUND: Perfluorooctanoic acid (PFOA) is a poly- and perfluoroalkyl substance (PFAS) associated with adverse pregnancy outcomes in mice and humans, but little is known regarding one of its replacements, hexafluoropropylene oxide dimer acid (HFPO-DA, referred to here as GenX), both of which have been reported as contaminants in drinking water. OBJECTIVES: We compared the toxicity of PFOA and GenX in pregnant mice and their developing embryo-placenta units, with a specific focus on the placenta as a hypothesized target. METHODS: Pregnant CD-1 mice were exposed daily to PFOA (0, 1, or 5mg/kg) or GenX (0, 2, or 10mg/kg) via oral gavage from embryonic day (E) 1.5 to 11.5 or 17.5 to evaluate exposure effects on the dam and embryo-placenta unit. Gestational weight gain (GWG), maternal clinical chemistry, maternal liver histopathology, placental histopathology, embryo weight, placental weight, internal chemical dosimetry, and placental thyroid hormone levels were determined. RESULTS: Exposure to GenX or PFOA resulted in increased GWG, with increase in weight most prominent and of shortest latency with 10mg/kg/d GenX exposure. Embryo weight was significantly lower after exposure to 5mg/kg/d PFOA (9.4% decrease relative to controls). Effect sizes were similar for higher doses (5mg/kg/d PFOA and 10mg/kg/d GenX) and lower doses (1mg/kg/d PFOA and 2mg/kg/d GenX), including higher maternal liver weights, changes in liver histopathology, higher placental weights and embryo-placenta weight ratios, and greater incidence of placental abnormalities relative to controls. Histopathological features in placentas suggested that PFOA and GenX may exhibit divergent mechanisms of toxicity in the embryo-placenta unit, whereas PFOA- and GenX-exposed livers shared a similar constellation of adverse pathological features. CONCLUSIONS: Gestational exposure to GenX recapitulated many documented effects of PFOA in CD-1 mice, regardless of its much shorter reported half-life; however, adverse effects toward the placenta appear to have compound-specific signatures. https://doi.org/10.1289/EHP6233.


Asunto(s)
Caprilatos/toxicidad , Fluorocarburos/toxicidad , Hidrocarburos Fluorados/toxicidad , Placenta/efectos de los fármacos , Pruebas de Toxicidad , Animales , Femenino , Ratones , Neprilisina , Embarazo/efectos de los fármacos
9.
Toxicol Pathol ; 47(7): 865-886, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31599209

RESUMEN

Congenital abnormalities of the urinary tract are some of the most common human developmental abnormalities. Several genetically engineered mouse models have been developed to mimic these abnormalities and aim to better understand the molecular mechanisms of disease. This atlas has been developed as an aid to pathologists and other biomedical scientists for identification of abnormalities in the developing murine urinary tract by cataloguing normal structures at each stage of development. Hematoxylin and eosin- and immunohistochemical-stained sections are provided, with a focus on E10.5-E18.5, as well as a brief discussion of postnatal events in urinary tract development. A section on abnormalities in the development of the urinary tract is also provided, and molecular mechanisms are presented as supplementary material. Additionally, overviews of the 2 key processes of kidney development, branching morphogenesis and nephrogenesis, are provided to aid in the understanding of the complex organogenesis of the kidney. One of the key findings of this atlas is the histological identification of the ureteric bud at E10.5, as previous literature has provided conflicting reports on the initial point of budding. Furthermore, attention is paid to points where murine development is significantly distinct from human development, namely, in the cessation of nephrogenesis.


Asunto(s)
Sistema Urinario/anomalías , Sistema Urinario/embriología , Animales , Femenino , Ratones , Morfogénesis , Embarazo , Sistema Urinario/crecimiento & desarrollo
10.
Toxicol Pathol ; 47(6): 665-783, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31526133

RESUMEN

The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative changes in rats and mice. The purpose of this publication is to provide a standardized nomenclature for classifying changes observed in the hematolymphoid organs, including the bone marrow, thymus, spleen, lymph nodes, mucosa-associated lymphoid tissues, and other lymphoid tissues (serosa-associated lymphoid clusters and tertiary lymphoid structures) with color photomicrographs illustrating examples of the lesions. Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. The nomenclature for these organs is divided into 3 terminologies: descriptive, conventional, and enhanced. Three terms are listed for each diagnosis. The rationale for this approach and guidance for its application to toxicologic pathology are described in detail below.


Asunto(s)
Investigación Biomédica/normas , Enfermedades de la Médula Ósea/clasificación , Médula Ósea , Enfermedades Linfáticas/clasificación , Tejido Linfoide , Animales , Animales de Laboratorio , Médula Ósea/anatomía & histología , Médula Ósea/patología , Enfermedades de la Médula Ósea/sangre , Enfermedades de la Médula Ósea/inmunología , Enfermedades de la Médula Ósea/patología , Enfermedades Linfáticas/sangre , Enfermedades Linfáticas/inmunología , Enfermedades Linfáticas/patología , Tejido Linfoide/anatomía & histología , Tejido Linfoide/patología , Ratones , Ratas , Terminología como Asunto
11.
J Vis Exp ; (136)2018 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-29912187

RESUMEN

Laser capture microdissection (LCM) has allowed gene expression analysis of single cells and enriched cell populations in tissue sections. LCM is a great tool for the study of the molecular mechanisms underlying cell differentiation and the development and progression of various diseases, including glaucoma. Glaucoma, which comprises a family of progressive optic neuropathies, is the most common cause of irreversible blindness worldwide. Structural changes and damage within the trabecular meshwork (TM) can result in increased intraocular pressure (IOP), which is a major risk factor for developing glaucoma. However, the precise molecular mechanisms involved are still poorly understood. The ability to perform gene expression analysis will be crucial in obtaining further insights into the function of these cells and its role in the regulation of IOP and glaucoma development. To achieve this, a reproducible method for isolating highly enriched TM from frozen sections of mouse eyes and a method for downstream gene expression analysis, such as RT-qPCR and RNA-Seq is needed. The method described herein is developed to isolate highly pure TM from mouse eyes for downstream digital PCR and microarray analysis. In addition, this technique can be easily adapted for the isolation of other highly enriched ocular cells and cell compartments that have been difficult to isolate from mouse eyes. The combination of LCM and RNA analysis can contribute to a more comprehensive understanding of the cellular events underlying glaucoma.


Asunto(s)
Ojo/fisiopatología , Captura por Microdisección con Láser/métodos , Malla Trabecular/cirugía , Animales , Expresión Génica , Humanos , Ratones
12.
J Toxicol Pathol ; 28(1): 51-3, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26023262

RESUMEN

The INHAND Proposal (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) has been operational since 2005. A Global Editorial Steering Committee (GESC) manages the overall objectives of the project and the development of harmonized terminology for each organ system is the responsibility of the Organ Working Groups (OWG), drawing upon experts from North America, Europe and Japan.Great progress has been made with 9 systems published to date - Respiratory, Hepatobiliary, Urinary, Central/Peripheral Nervous Systems, Male Reproductive and Mammary, Zymbals, Clitoral and Preputial Glands in Toxicologic Pathology and the Integument and Soft Tissue and Female Reproductive System in the Journal of Toxicologic Pathology as supplements and on a web site - www.goreni.org. INHAND nomenclature guides offer diagnostic criteria and guidelines for recording lesions observed in rodent toxicity and carcinogenicity studies. The guides provide representative photo-micrographs of morphologic changes, information regarding pathogenesis, and key references. During 2012, INHAND GESC representatives attended meetings with representatives of the FDA Center for Drug Evaluation and Research (CDER), Clinical Data Interchange Standards Consortium (CDISC), and the National Cancer Institute (NCI) Enterprise Vocabulary Services (EVS) to begin incorporation of INHAND terminology as preferred terminology for SEND (Standard for Exchange of Nonclinical Data) submissions to the FDA. The interest in utilizing the INHAND nomenclature, based on input from industry and government toxicologists as well as information technology specialists, suggests that there will be wide acceptance of this nomenclature. The purpose of this publication is to provide an update on the progress of INHAND.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...