Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 1(5): 1-13, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35662881

RESUMEN

Voltage-gated sodium (Nav1.5) channels support the genesis and brisk spatial propagation of action potentials in the heart. Disruption of NaV1.5 inactivation results in a small persistent Na influx known as late Na current (I Na,L), which has emerged as a common pathogenic mechanism in both congenital and acquired cardiac arrhythmogenic syndromes. Here, using low-noise multi-channel recordings in heterologous systems, LQTS3 patient-derived iPSCs cardiomyocytes, and mouse ventricular myocytes, we demonstrate that the intracellular fibroblast growth factor homologous factors (FHF1-4) tune pathogenic I Na,L in an isoform-specific manner. This scheme suggests a complex orchestration of I Na,L in cardiomyocytes that may contribute to variable disease expressivity of NaV1.5 channelopathies. We further leverage these observations to engineer a peptide-inhibitor of I Na,L with a higher efficacy as compared to a well-established small-molecule inhibitor. Overall, these findings lend insights into molecular mechanisms underlying FHF regulation of I Na,L in pathophysiology and outline potential therapeutic avenues.

3.
Structure ; 29(12): 1339-1356.e7, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33770503

RESUMEN

Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 µM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Calmodulina/genética , Humanos , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Unión Proteica
4.
J Biol Chem ; 296: 100458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639159

RESUMEN

Voltage-gated sodium channels (Navs) are tightly regulated by multiple conserved auxiliary proteins, including the four fibroblast growth factor homologous factors (FGFs), which bind the Nav EF-hand like domain (EFL), and calmodulin (CaM), a multifunctional messenger protein that binds the NaV IQ motif. The EFL domain and IQ motif are contiguous regions of NaV cytosolic C-terminal domains (CTD), placing CaM and FGF in close proximity. However, whether the FGFs and CaM act independently, directly associate, or operate through allosteric interactions to regulate channel function is unknown. Titrations monitored by steady-state fluorescence spectroscopy, structural studies with solution NMR, and computational modeling demonstrated for the first time that both domains of (Ca2+)4-CaM (but not apo CaM) directly bind two sites in the N-terminal domain (NTD) of A-type FGF splice variants (FGF11A, FGF12A, FGF13A, and FGF14A) with high affinity. The weaker of the (Ca2+)4-CaM-binding sites was known via electrophysiology to have a role in long-term inactivation of the channel but not known to bind CaM. FGF12A binding to a complex of CaM associated with a fragment of the NaV1.2 CTD increased the Ca2+-binding affinity of both CaM domains, consistent with (Ca2+)4-CaM interacting preferentially with its higher-affinity site in the FGF12A NTD. Thus, A-type FGFs can compete with NaV IQ motifs for (Ca2+)4-CaM. During spikes in the cytosolic Ca2+ concentration that accompany an action potential, CaM may translocate from the NaV IQ motif to the FGF NTD, or the A-type FGF NTD may recruit a second molecule of CaM to the channel.


Asunto(s)
Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Calcio/metabolismo , Calmodulina/fisiología , Motivos EF Hand/genética , Factores de Crecimiento de Fibroblastos/genética , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Canales de Sodio Activados por Voltaje/metabolismo
5.
Biomol NMR Assign ; 12(2): 283-289, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29728980

RESUMEN

Human voltage-gated sodium (NaV) channels are critical for initiating and propagating action potentials in excitable cells. Nine isoforms have different roles but similar topologies, with a pore-forming α-subunit and auxiliary transmembrane ß-subunits. NaV pathologies lead to debilitating conditions including epilepsy, chronic pain, cardiac arrhythmias, and skeletal muscle paralysis. The ubiquitous calcium sensor calmodulin (CaM) binds to an IQ motif in the C-terminal tail of the α-subunit of all NaV isoforms, and contributes to calcium-dependent pore-gating in some channels. Previous structural studies of calcium-free (apo) CaM bound to the IQ motifs of NaV1.2, NaV1.5, and NaV1.6 showed that CaM binding was mediated by the C-domain of CaM (CaMC), while the N-domain (CaMN) made no detectable contacts. To determine whether this domain-specific recognition mechanism is conserved in other NaV isoforms, we used solution NMR spectroscopy to assign the backbone resonances of complexes of apo CaM bound to peptides of IQ motifs of NaV1.1, NaV1.4, and NaV1.7. Analysis of chemical shift differences showed that peptide binding only perturbed resonances in CaMC; resonances of CaMN were identical to free CaM. Thus, CaMC residues contribute to the interface with the IQ motif, while CaMN is available to interact elsewhere on the channel.


Asunto(s)
Apoproteínas/química , Apoproteínas/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Canales de Sodio Activados por Voltaje/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canales de Sodio Activados por Voltaje/química
6.
Biomol NMR Assign ; 11(2): 297-303, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28823028

RESUMEN

Human voltage-gated sodium channel NaV1.2 has a single pore-forming α-subunit and two transmembrane ß-subunits. Expressed primarily in the brain, NaV1.2 is critical for initiation and propagation of action potentials. Milliseconds after the pore opens, sodium influx is terminated by inactivation processes mediated by regulatory proteins including calmodulin (CaM). Both calcium-free (apo) CaM and calcium-saturated CaM bind tightly to an IQ motif in the C-terminal tail of the α-subunit. Our thermodynamic studies and solution structure (2KXW) of a C-domain fragment of apo 13C,15N- CaM (CaMC) bound to an unlabeled peptide with the sequence of rat NaV1.2 IQ motif showed that apo CaMC (a) was necessary and sufficient for binding, and (b) bound more favorably than calcium-saturated CaMC. However, we could not monitor the NaV1.2 residues directly, and no structure of full-length CaM (including the N-domain of CaM (CaMN)) was determined. To distinguish contributions of CaMN and CaMC, we used solution NMR spectroscopy to assign the backbone resonances of a complex containing a 13C,15N-labeled peptide with the sequence of human NaV1.2 IQ motif (NaV1.2IQp) bound to apo 13C,15N-CaM or apo 13C,15N-CaMC. Comparing the assignments of apo CaM in complex with NaV1.2IQp to those of free apo CaM showed that residues within CaMC were significantly perturbed, while residues within CaMN were essentially unchanged. The chemical shifts of residues in NaV1.2IQp and in the C-domain of CaM were nearly identical regardless of whether CaMN was covalently linked to CaMC. This suggests that CaMN does not influence apo CaM binding to NaV1.2IQp.


Asunto(s)
Apoproteínas/química , Apoproteínas/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencias de Aminoácidos , Humanos , Unión Proteica , Dominios Proteicos
7.
Blood ; 129(22): 3000-3008, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424165

RESUMEN

Glucocorticoids (GCs), including dexamethasone (dex), are a central component of combination chemotherapy for childhood B-cell precursor acute lymphoblastic leukemia (B-ALL). GCs work by activating the GC receptor (GR), a ligand-induced transcription factor, which in turn regulates genes that induce leukemic cell death. Which GR-regulated genes are required for GC cytotoxicity, which pathways affect their regulation, and how resistance arises are not well understood. Here, we systematically integrate the transcriptional response of B-ALL to GCs with a next-generation short hairpin RNA screen to identify GC-regulated "effector" genes that contribute to cell death, as well as genes that affect the sensitivity of B-ALL cells to dex. This analysis reveals a pervasive role for GCs in suppression of B-cell development genes that is linked to therapeutic response. Inhibition of phosphatidylinositol 3-kinase δ (PI3Kδ), a linchpin in the pre-B-cell receptor and interleukin 7 receptor signaling pathways critical to B-cell development (with CAL-101 [idelalisib]), interrupts a double-negative feedback loop, enhancing GC-regulated transcription to synergistically kill even highly resistant B-ALL with diverse genetic backgrounds. This work not only identifies numerous opportunities for enhanced lymphoid-specific combination chemotherapies that have the potential to overcome treatment resistance, but is also a valuable resource for understanding GC biology and the mechanistic details of GR-regulated transcription.


Asunto(s)
Glucocorticoides/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Dexametasona/farmacología , Resistencia a Antineoplásicos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-bcr/genética , Proteínas Proto-Oncogénicas c-bcr/metabolismo , ARN Interferente Pequeño/genética , Receptores de Glucocorticoides/efectos de los fármacos , Transducción de Señal
8.
Biophys Chem ; 224: 1-19, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28343066

RESUMEN

Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.


Asunto(s)
Secuencias de Aminoácidos , Calcio/farmacología , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/química , Animales , Sitios de Unión , Calcio/metabolismo , Proteínas del Tejido Nervioso/química , Resonancia Magnética Nuclear Biomolecular , Ratas
9.
Nat Chem Biol ; 12(10): 860-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27547920

RESUMEN

Oxidation of methionine disrupts the structure and function of a range of proteins, but little is understood about the chemistry that underlies these perturbations. Using quantum mechanical calculations, we found that oxidation increased the strength of the methionine-aromatic interaction motif, a driving force for protein folding and protein-protein interaction, by 0.5-1.4 kcal/mol. We found that non-hydrogen-bonded interactions between dimethyl sulfoxide (a methionine analog) and aromatic groups were enriched in both the Protein Data Bank and Cambridge Structural Database. Thermal denaturation and NMR spectroscopy experiments on model peptides demonstrated that oxidation of methionine stabilized the interaction by 0.5-0.6 kcal/mol. We confirmed the biological relevance of these findings through a combination of cell biology, electron paramagnetic resonance spectroscopy and molecular dynamics simulations on (i) calmodulin structure and dynamics, and (ii) lymphotoxin-α binding toTNFR1. Thus, the methionine-aromatic motif was a determinant of protein structural and functional sensitivity to oxidative stress.


Asunto(s)
Hidrocarburos Aromáticos/química , Metionina/química , Hidrocarburos Aromáticos/metabolismo , Metionina/metabolismo , Modelos Moleculares , Oxidación-Reducción , Teoría Cuántica
10.
Biochemistry ; 55(21): 2914-26, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27191789

RESUMEN

Synaptotagmin I (Syt I) is a vesicle-localized integral membrane protein that senses the calcium ion (Ca(2+)) influx to trigger fast synchronous release of neurotransmitter. How the cytosolic domains of Syt I allosterically communicate to propagate the Ca(2+) binding signal throughout the protein is not well understood. In particular, it is unclear whether the intrinsically disordered region (IDR) between Syt I's transmembrane helix and first C2 domain (C2A) plays an important role in allosteric modulation of Ca(2+) binding. Moreover, the structural propensity of this IDR with respect to membrane lipid composition is unknown. Using differential scanning and isothermal titration calorimetry, we found that inclusion of the IDR does indeed allosterically modulate Ca(2+) binding within the first C2 domain. Additionally through application of nuclear magnetic resonance, we found that Syt I's IDR interacts with membranes whose lipid composition mimics that of a synaptic vesicle. These findings not only indicate that Syt I's IDR plays a role in regulating Syt I's Ca(2+) sensing but also indicate the IDR is exquisitely sensitive to the underlying membrane lipids. The latter observation suggests the IDR is a key route for communication of lipid organization to the adjacent C2 domains.


Asunto(s)
Calcio/metabolismo , Lípidos/química , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Transmisión Sináptica , Vesículas Sinápticas/química
11.
Biochim Biophys Acta ; 1838(9): 2331-40, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24657395

RESUMEN

Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Lípidos/química , Proteínas de la Membrana/química , Rastreo Diferencial de Calorimetría , Membrana Celular/metabolismo , Humanos , Mastocitos/química , Microdominios de Membrana/química , Fosfatidilcolinas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal
12.
Structure ; 22(1): 104-15, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24239457

RESUMEN

Dysferlin plays a critical role in the Ca²âº-dependent repair of microlesions that occur in the muscle sarcolemma. Of the seven C2 domains in dysferlin, only C2A is reported to bind both Ca²âº and phospholipid, thus acting as a key sensor in membrane repair. Dysferlin C2A exists as two isoforms, the "canonical" C2A and C2A variant 1 (C2Av1). Interestingly, these isoforms have markedly different responses to Ca²âº and phospholipid. Structural and thermodynamic analyses are consistent with the canonical C2A domain as a Ca²âº-dependent, phospholipid-binding domain, whereas C2Av1 would likely be Ca²âº-independent under physiological conditions. Additionally, both isoforms display remarkably low free energies of stability, indicative of a highly flexible structure. The inverted ligand preference and flexibility for both C2A isoforms suggest the capability for both constitutive and Ca²âº-regulated effector interactions, an activity that would be essential in its role as a mediator of membrane repair.


Asunto(s)
Empalme Alternativo , Calcio/metabolismo , Proteínas de la Membrana/química , Proteínas Musculares/química , ARN Mensajero/genética , Sarcolema/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Disferlina , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutagénesis Sitio-Dirigida , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regeneración , Sarcolema/ultraestructura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA