Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Pathol ; 56(2): 322-331, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30381013

RESUMEN

Lipin-1 ( Lpin1)-deficient lipodystrophic mice have scant and immature adipocytes and develop transient fatty liver early in life. Unlike normal mice, these mice cannot rely on stored triglycerides to generate adenosine triphosphate (ATP) from the ß-oxidation of fatty acids during periods of fasting. To compensate, these mice store much higher amounts of glycogen in skeletal muscle and liver than wild-type mice in order to support energy needs during periods of fasting. Our studies demonstrated that there are phenotypic changes in skeletal muscle fibers that reflect an adaptation to this unique metabolic situation. The phenotype of skeletal muscle (soleus, gastrocnemius, plantaris, and extensor digitorum longus [EDL]) from Lpin1-/- was evaluated using various methods including immunohistochemistry for myosin heavy chains (Myh) 1, 2, 2a, 2b, and 2x; enzyme histochemistry for myosin ATPase, cytochrome-c oxidase (COX), and succinyl dehydrogenase (SDH); periodic acid-Schiff; and transmission electron microscopy. Fiber-type changes in the soleus muscle of Lpin1-/- mice were prominent and included decreased Myh1 expression with concomitant increases in Myh2 expression and myosin-ATPase activity; this change was associated with an increase in the presence of Myh1/2a or Myh1/2x hybrid fibers. Alterations in mitochondrial enzyme activity (COX and SDH) were apparent in the myofibers in the soleus, gastrocnemius, plantaris, and EDL muscles. Electron microscopy revealed increases in the subsarcolemmal mitochondrial mass in the muscles of Lpin1-/- mice. These data demonstrate that lipin-1 deficiency results in phenotypic fiber-specific modulation of skeletal muscle necessary for compensatory fuel utilization adaptations in lipodystrophy.


Asunto(s)
Lipodistrofia/patología , Músculo Esquelético/patología , Proteínas Nucleares/deficiencia , Fosfatidato Fosfatasa/deficiencia , Animales , Modelos Animales de Enfermedad , Femenino , Lipodistrofia/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Microscopía Electrónica de Transmisión , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Rápida/ultraestructura , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Fibras Musculares de Contracción Lenta/ultraestructura , Músculo Esquelético/ultraestructura , Proteínas Nucleares/genética , Fenotipo , Fosfatidato Fosfatasa/genética
2.
Dev Biol ; 416(2): 373-88, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27217161

RESUMEN

Adprhl1, a member of the ADP-ribosylhydrolase protein family, is expressed exclusively in the developing heart of all vertebrates. In the amphibian Xenopus laevis, distribution of its mRNA is biased towards actively growing chamber myocardium. Morpholino oligonucleotide-mediated knockdown of all Adprhl1 variants inhibits striated myofibril assembly and prevents outgrowth of the ventricle. The resulting ventricles retain normal electrical conduction and express markers of chamber muscle differentiation but are functionally inert. Using a cardiac-specific Gal4 binary expression system, we show that the abundance of Adprhl1 protein in tadpole hearts is tightly controlled through a negative regulatory mechanism targeting the 5'-coding sequence of Xenopus adprhl1. Over-expression of full length (40kDa) Adprhl1 variants modified to escape such repression, also disrupts cardiac myofibrillogenesis. Disarrayed myofibrils persist that show extensive branching, with sarcomere division occurring at the actin-Z-disc boundary. Ultimately, Adprhl1-positive cells contain thin actin threads, connected to numerous circular branch points. Recombinant Adprhl1 can localize to stripes adjacent to the Z-disc, suggesting a direct role for Adprhl1 in modifying Z-disc and actin dynamics as heart chambers grow. Modelling the structure of Adprhl1 suggests this cardiac-specific protein is a pseudoenzyme, lacking key residues necessary for ADP-ribosylhydrolase catalytic activity.


Asunto(s)
Citoesqueleto de Actina/fisiología , Regulación del Desarrollo de la Expresión Génica , Miocardio/citología , N-Glicosil Hidrolasas/fisiología , Proteínas de Xenopus/fisiología , Animales , Animales Modificados Genéticamente , Técnicas de Silenciamiento del Gen , Corazón/embriología , Corazón/crecimiento & desarrollo , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/crecimiento & desarrollo , Humanos , Larva , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Morfolinos/farmacología , Mutación , Miocardio/metabolismo , N-Glicosil Hidrolasas/biosíntesis , N-Glicosil Hidrolasas/genética , Organogénesis , Conformación Proteica , ARN Mensajero/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA