Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
BMC Chem ; 18(1): 124, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956730

RESUMEN

One of the biggest issues affecting the entire world currently is water contamination caused by textile industries' incapacity to properly dispose their wastewater. The presence of toxic textile dyes in the aquatic environment has attracted significant research interest due to their high environmental stability and their negative effects on human health and ecosystems. Therefore, it is crucial to convert the hazardous dyes such as methyl orange (MO) azo dye into environmentally safe products. In this context, we describe the use of Copper Nitroprusside Chitosan (Cu/SNP/Cts) nanocomposite as a nanocatalyst for the chemical reduction of azodyes by sodium borohydride (NaBH4). The Cu/SNP/Cts was readily obtained by chemical coprecipitation in a stoichiometric manner. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy were applied to investigate chemical, phase, composition, and molecular interactions. Additionally, Scanning electron microscope (SEM) was used to examine the nanomaterial's microstructure. UV-vis spectroscopy was utilized for studying the Cu Nitroprusside Chitosan's catalytic activity for the reduction of azodye. The Cu/SNP/Cts nanocomposite demonstrated outstanding performance with total reduction time 160 s and pseudo-first order constant of 0.0188 s-1. Additionally, the stability and reusability study demonstrated exceptional reusability up to 5 cycles with minimal activity loss. The developed Cu/SNP/Cts nanocomposite act as efficient nanocatalysts for the reduction of harmful Methyl orange azodye.

2.
ACS Omega ; 9(25): 27517-27527, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947834

RESUMEN

Herein, we synthesized biogenic carbon dots (CDs) with blue-shifted maximum excitation (λex/λem of 320/404 nm) from largely wasted tangerine seeds for the first time via a one-step hydrothermal method. The biogenic CDs exhibit a maximum excitation wavelength that overlaps with the absorption spectrum of ketorolac tromethamine (KETO) at 320 nm. The developed CDs serve as a turn-off fluorescent probe via an inner filter effect (IFE) quenching mechanism. The resulting CDs have high quantum yield (QY) (39% ± 2.89%, n = 5) and exhibited great performance toward KETO over a concentration range of 0.50-16.00 µg/mL with a limit of detection (LOD) = 0.17 µg/mL. The nanoprobe achieved a high % recovery in assaying KETO in tablet dosage form and had not been significantly affected by various interferents including co-formulated and co-administered drugs. The nanoprobe shows selectivity toward KETO, even in the presence of its photocatalytic degradation products. It can effectively investigate the elimination of KETO from aquatic systems and test its stability in pharmaceutical preparations. The developed nanoprobe underwent a comprehensive evaluation of its environmental impact using analytical eco-scale (AES), complex green analytical procedure index (Complex GAPI), and the Analytical GREEnness calculator (AGREE). The sustainability of the developed nano sensor was assessed and compared to the reported metal-based quantum dots probe for KETO using the innovative RGB 12 model, considering 12 white analytical chemistry (WAC) perspectives.

3.
Future Sci OA ; 10(1): FSO968, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827788

RESUMEN

Aim: To investigate different approaches to RA treatment that might lead to greater efficacy and better safety profiles. Methods: The Search strategy was based on medical subject headings, and screening and selection were based on inclusion/exclusion criteria. Results & discussion: Early therapy is critical for disease control and loss of bodily function. The most promising outcomes came from the development of disease-modifying anti-rheumatic drugs. Different foods have anti-inflammatory and antioxidant qualities that protect against the development of rheumatoid arthritis (RA). Some dietary patterns and supplements have been shown to have potential protective benefits against RA. Conclusion: Improvement in the quality of life of RA patients requires a tailored management approach based on the current patient medical data.


Rheumatoid arthritis is a complex disease with an unclear origin that affects the joints. In this systematic review, we aimed to investigate different effective ways of treating rheumatoid arthritis. Study results indicate that rheumatoid arthritis treatment requires coordination between different healthcare teams. As much as we can, when we start disease treatment early, this will lead to a better disease cure. Different drugs showed promising results in the treatment of rheumatoid arthritis, but the most promising treatment results came from a group of medicinal agents called 'disease-modifying anti-rheumatic drugs'. Different foods have anti-inflammatory and antioxidant effect and help in protection against rheumatoid arthritis, but others, such as red meat and salt, have the opposite effect. Some dietary patterns and supplements, such as the Mediterranean Diet, vitamin D and probiotics, have been shown to have potential protective benefits against rheumatoid arthritis. Improvement in the quality of patient life requires an individualized management roadmap based on current patient medical data.

4.
RSC Adv ; 14(22): 15232-15239, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38774109

RESUMEN

The release of toxic azo dyes pollutants in the environment from different industries represents a public health concern and a serious environmental problem. Therefore, the conversion of hazardous methyl orange (MO) azo dye to environmentally benign products is a critical demand. In this work, an eco-friendly Prussian blue analogue (PBA) was synthesized and its catalytic activity toward the reduction of MO was investigated. The PBA copper(ii) hexacyanocobaltate(III) (Cu3[Co(CN)6]2) was synthesized by a facile inexpensive chemical coprecipitation method without using hazardous solvents. The nanocatalyst was characterized using XPS, Raman, FTIR spectroscopy, and XRD. The chemical reduction of MO using NaBH4 and the PBA as nanocatalyst was monitored by UV-VIS spectroscopy. Toxic MO was completely reduced in 105 s with a rate constant (k) 0.0386 s-1 using only 10 µg of the PBA nanocatalyst. Besides the powerful catalytic activity, the nanocatalyst also showed excellent stability and recyclability for ten consecutive cycles, with no significant decrease in the catalytic performance. Therefore, the proposed PBA is a promising, stable, cost-effective, and eco-friendly nanocatalyst for the rapid elimination of hazardous azo dyes.

5.
ACS Omega ; 9(12): 14198-14209, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559915

RESUMEN

In this work, a novel, green, and atom-efficient method for the synthesis of tetrahydro-ß-carboline derivatives using electrochemistry (EC) in deep eutectic solvents (DESs) was reported. The EC reaction conditions were optimized to achieve the highest yield. The experimental design was also optimized to perform the reaction in a two-step, one-pot reaction, thereby the time, workup procedure, and solvents needed were all reduced. The new approach achieved our strategy as EC served to decrease the time of reaction, eliminate the use of hazardous catalysts, and lower the energy required for the synthesis of the targeted compounds. On the other side, DESs were used as catalysts, in situ electrolytes, and noninflammable green solvents. The scope of the reaction was investigated using different aromatic aldehydes. Finally, the scalability of the reaction was investigated using a gram-scale reaction that afforded the product in an excellent yield.

6.
Future Med Chem ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488019

RESUMEN

Background: 4-Methylacetophenone is used in the preparation of starting materials, 4-methylphenacyle bromide (2) and 4-methylacetophenone thiosemicarbazole (3). Results: Several novel 2,4-disubstituted-1,3-thiazole analogues were obtained via the treatment of starting materials with 4-methylphenacyl bromide, acetyl chloride, aromatic aldehydes and bromination providing thiazole derivatives 5-8 respectively. Conclusion: Compounds 5-8 were investigated for their cytotoxic activity on MCF-7 and normal breast cells. Active compounds were found and in contrast to staurosporine, compound 8 displayed the most potent cytotoxic action that showed a strong inhibitory effect (aromatase) and (protein tyrosine kinase) enzymes, proving that the novel thiazole derivatives promoted the effective anticancer drug candidates.

7.
Adv Exp Med Biol ; 1443: 87-101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409417

RESUMEN

Microbiotas are an adaptable component of ecosystems, including human ecology. Microorganisms influence the chemistry of their specialized niche, such as the human gut, as well as the chemistry of distant surroundings, such as other areas of the body. Metabolomics based on mass spectrometry (MS) is one of the primary methods for detecting and identifying small compounds generated by the human microbiota, as well as understanding the functional significance of these microbial metabolites. This book chapter gives basic knowledge on the kinds of untargeted mass spectrometry as well as the data types that may be generated in the context of microbiome study. While data analysis remains a barrier, the emphasis is on data analysis methodologies and integrative analysis, particularly the integration of microbiome sequencing data. Mass spectrometry (MS)-based techniques have resurrected culture methods for studying the human gut microbiota, filling in the gaps left by high-throughput sequencing methods in terms of culturing minor populations.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
8.
Adv Exp Med Biol ; 1443: 243-256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409425

RESUMEN

Proteomics has grown in importance in molecular sciences because it gives vital information on protein identification, expression levels, and alteration. Cancer is one of the world's major causes of death and is the major focus of much research. Cancer risk is determined by hereditary variables as well as the body's immunological condition. Probiotics have increasing medical importance due to their therapeutic influence on the human body in the prevention and treatment of numerous chronic illnesses, including cancer, with no adverse effects. Several anticancer, anti-inflammatory, and chemopreventive probiotics are studied using different proteomic approaches like two-dimensional gel electrophoresis, liquid chromatography-mass spectrometry, and matrix-assisted laser desorption/ionization mass spectrometry. To gain relevant information about probiotic characteristics, data from the proteomic analysis are evaluated and processed using bioinformatics pipelines. Proteomic studies showed the significance of different proteomic approaches in characterization, comparing strains, and determination of oxidative stress of different probiotics. Moreover, proteomic approaches identified different proteins that are involved in glucose metabolism and the formation of cell walls or cell membranes, and the differences in the expression of critical enzymes in the HIF-1 signaling pathway, starch, and sucrose metabolism, and other critical metabolic pathways.


Asunto(s)
Neoplasias , Probióticos , Humanos , Proteínas Bacterianas/metabolismo , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Probióticos/uso terapéutico , Neoplasias/prevención & control , Electroforesis en Gel Bidimensional
9.
Clin. transl. oncol. (Print) ; 26(1): 288-296, jan. 2024.
Artículo en Inglés | IBECS | ID: ibc-229167

RESUMEN

Purpose Compared to the free-breathing technique, adjuvant left breast irradiation after breast-conserving surgery or mastectomy using the breath-hold method significantly reduces the heart mean dose, Left anterior descending artery, and ipsilateral lung doses. Movement with deep inspiration may also reduce heart volume in the field and regional node doses. Materials and methods Pre-radiotherapy planning CT was performed in the free-breathing, and breath-hold techniques using RPM, demographic information, clinicopathological data, heart volume in the field, heart mean dose, LAD mean dose, and regional nodal doses were calculated in both free breathing and DIBH. Fifty patients with left breast cancer receiving left breast adjuvant radiation were enrolled. Results There was no significant difference in axillary LN coverage between the two techniques, except for SCL maximum dose, Axilla I node maximum dose, and Axilla II minimum dose in favor of the breath hold technique. The mean age was 47.54 years, 78% had GII IDC, 66% had positive LVSI results, and 74% of patients had T2. The breath hold strategy resulted in considerably decreased mean heart dose (p = 0.000), LAD dose (p = 0.000), ipsilateral lung mean dose (p = 0.012), and heart volume if the field (p = 0.013). The mean cardiac dosage and the dose of the LAD were significantly correlated (p = 0.000, R = 0.673). Heart volume in the field and heart mean dosage was not significantly correlated (p = 0.285, r = − 0.108). Conclusion When compared to free breathing scans, DIBH procedures result in considerably reduced dosage to the OAR and no appreciable changes in dose exposure to regional lymph node stations in patients with left-sided breast cancer (AU)


Asunto(s)
Humanos , Femenino , Radioterapia de Intensidad Modulada/métodos , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Órganos en Riesgo/efectos de la radiación , Dosis de Radiación
10.
Appl Opt ; 63(1): 30-41, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175002

RESUMEN

Multilayer coated diffraction gratings are crucial components for extreme ultraviolet (EUV) applications such as spectroscopy or spectro-imaging. However, for high groove density, the smoothening of the grating surface profile with multilayer deposition remains a limitation that requires further investigation. In this paper, we report on the design, characterization, and modeling of 4000 lines/mm diffraction gratings coated with periodic and aperiodic Al/Mo/SiC multilayers for EUV radiation. Two types of gratings with different groove depths are compared. Multilayer coatings were designed using a genetic algorithm to maximize the first-order diffraction efficiency in the 17-21 and 19-23 nm wavelength ranges at normal incidence. Periodic and aperiodic multilayers with different numbers of layers were deposited by magnetron sputtering on the two types of fused silica gratings, and the grating groove profile evolution was measured by atomic force microscopy and cross-section transmission electron microscopy. The first-order diffraction efficiency was measured in the EUV at 5° incidence using monochromatic synchrotron radiation and modeled using the rigorous coupled-wave analysis method. The simulation models refined by using the Debye-Waller factor to account for the multilayer interfacial roughness show good agreement with experimental data. The results reported in this study will allow for designing efficient EUV multilayer gratings for high-resolution spectro-imaging instruments.

11.
Clin Transl Oncol ; 26(1): 288-296, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37382756

RESUMEN

PURPOSE: Compared to the free-breathing technique, adjuvant left breast irradiation after breast-conserving surgery or mastectomy using the breath-hold method significantly reduces the heart mean dose, Left anterior descending artery, and ipsilateral lung doses. Movement with deep inspiration may also reduce heart volume in the field and regional node doses. MATERIALS AND METHODS: Pre-radiotherapy planning CT was performed in the free-breathing, and breath-hold techniques using RPM, demographic information, clinicopathological data, heart volume in the field, heart mean dose, LAD mean dose, and regional nodal doses were calculated in both free breathing and DIBH. Fifty patients with left breast cancer receiving left breast adjuvant radiation were enrolled. RESULTS: There was no significant difference in axillary LN coverage between the two techniques, except for SCL maximum dose, Axilla I node maximum dose, and Axilla II minimum dose in favor of the breath hold technique. The mean age was 47.54 years, 78% had GII IDC, 66% had positive LVSI results, and 74% of patients had T2. The breath hold strategy resulted in considerably decreased mean heart dose (p = 0.000), LAD dose (p = 0.000), ipsilateral lung mean dose (p = 0.012), and heart volume if the field (p = 0.013). The mean cardiac dosage and the dose of the LAD were significantly correlated (p = 0.000, R = 0.673). Heart volume in the field and heart mean dosage was not significantly correlated (p = 0.285, r = - 0.108). CONCLUSION: When compared to free breathing scans, DIBH procedures result in considerably reduced dosage to the OAR and no appreciable changes in dose exposure to regional lymph node stations in patients with left-sided breast cancer.


Asunto(s)
Neoplasias de la Mama , Radioterapia de Intensidad Modulada , Humanos , Persona de Mediana Edad , Femenino , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Contencion de la Respiración , Volumen Cardíaco , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Mastectomía , Corazón/efectos de la radiación
12.
Biosens Bioelectron ; 248: 115971, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154328

RESUMEN

Apomorphine is a dopamine agonist that is used for the management of Parkinson's disease and has been proven to effectively decrease the off-time duration, where the symptoms recur, in Parkinson's disease patients. This paper describes the design and fabrication of the first potentiometric sensor for the determination of apomorphine in bulk and human plasma samples. The fabrication protocol involves stereolithographic 3D printing, which is a unique tool for the rapid fabrication of low-cost sensors. The solid-contact apomorphine ion-selective electrode combines a carbon-mesh/thermoplastic composite as the ion-to-electron transducer and a 3D printed ion-selective membrane, doped with the ionophore calix[6]arene. The sensor selectively measures apomorphine in the presence of other biologically present cations - sodium, potassium, magnesium, and calcium - as well as the commonly prescribed Parkinson's pharmaceutical, levodopa (L-Dopa). The sensor demonstrated a linear, Nernstian response, with a slope of 58.8 mV/decade over the range of 5.0 mM-9.8 µM, which covers the biologically (and pharmaceutically) relevant ranges, with a limit of detection of 2.51 µM. Moreover, the apomorphine sensor exhibited good stability (minimal drift of just 188 µV/hour over 10 h) and a shelf-life of almost 4 weeks. Experiments performed in the presence of albumin, the main plasma protein to which apomorphine binds, demonstrate that the sensor responds selectively to free-apomorphine (i.e., not bound or complexed forms). The utility of the sensor was confirmed through the successful determination of apomorphine in spiked human plasma samples.


Asunto(s)
Técnicas Biosensibles , Enfermedad de Parkinson , Humanos , Apomorfina , Enfermedad de Parkinson/tratamiento farmacológico , Electrodos de Iones Selectos , Preparaciones Farmacéuticas , Potenciometría
13.
BMC Chem ; 17(1): 170, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017490

RESUMEN

Environmental appearance of antimicrobials due to frequent use of personal care products as recommended by WHO can cause serious flare-up of antimicrobial resistance. In this work, three eco-friendly microfabricated copper solid-state sensors were developed for measuring triclosan in water. Multi-walled carbon nanotubes were incorporated in sensor 2 and 3 as hydrophobic conductive inner layer. Meanwhile, ß-cyclodextrin was incorporated in sensor 3 as an ionophore for selective binding of TCS in presence of interfering compounds. The obtained linear responses of sensors 1, 2 and 3 were (1 × 10- 8-1 × 10- 3 M), (1 × 10- 9-1 × 10- 3 M) and (1 × 10- 10- 1 × 10- 3 M), respectively. Limit of detection was 9.87 × 10- 9 M, 9.62 × 10- 10 M, and 9.94 × 10- 11 M, respectively. The miniaturized sensors were utilized for monitoring of triclosan in water samples.

14.
Plants (Basel) ; 12(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836147

RESUMEN

As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.

15.
Plants (Basel) ; 12(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836175

RESUMEN

Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse impacts of N toxicity on Phaseolus vulgaris growth, yield quality, physio-chemical properties, and defense systems. For this purpose, the soil was fertilized with 100, 125, and 150% of the recommended N dose (RND), and the plants were sprayed with 1.5% DHS. Trials were arranged in a two-factor split-plot design (N levels occupied main plots × DH- occupied subplots). Excess N (150% RND) caused a significant decline in plant growth, yield quality, photosynthesis, and antioxidants, while significantly increasing oxidants and oxidative damage [hydrogen peroxide (H2O2), superoxide (O2•-), nitrate, electrolyte leakage (EL), and malondialdehyde (MDA) levels]. However, DHS significantly improved antioxidant activities (glutathione and nitrate reductases, catalase, ascorbate peroxidase, superoxide dismutase, proline, ascorbate, α-tocopherol, and glutathione) and osmoregulatory levels (soluble protein, glycine betaine, and soluble sugars). Enzyme gene expressions showed the same trend as enzyme activities. Additionally, H2O2, O2•-, EL, MDA, and nitrate levels were significantly declined, reflecting enhanced growth, yield, fruit quality, and photosynthetic efficiency. The results demonstrate that DHS can be used as an eco-friendly approach to overcome the harmful impacts of N toxicity on P. vulgaris plants.

16.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37631008

RESUMEN

Nutrigenomics is the study of the impact of diets or nutrients on gene expression and phenotypes using high-throughput technologies such as transcriptomics, proteomics, metabolomics, etc. The bioactive components of diets and nutrients, as an environmental factor, transmit information through altered gene expression and hence the overall function and traits of the organism. Dietary components and nutrients not only serve as a source of energy but also, through their interactions with genes, regulate gut microbiome composition, the production of metabolites, various biological processes, and finally, health and disease. Antimicrobial resistance in pathogenic and probiotic microorganisms has emerged as a major public health concern due to the presence of antimicrobial resistance genes in various food products. Recent evidence suggests a correlation between the regulation of genes and two-component and other signaling systems that drive antibiotic resistance in response to diets and nutrients. Therefore, diets and nutrients may be alternatively used to overcome antibiotic resistance against novel antibiotics. However, little progress has been made in this direction. In this review, we discuss the possible implementations of nutrigenomics in antibiotic resistance against novel antibiotics.

17.
RSC Adv ; 13(36): 25129-25139, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37614794

RESUMEN

The electropolymerized molecularly imprinted polymers (MIP) have enabled the utilization of various functional monomers with superior selective recognition of the target analyte template. Methyldopa is an attractive synthetic dopamine analogue which has phenolic, carboxylic, and aminic functional groups. In this research, methyldopa was exploited to fabricate selective MIPs, for the detection of sofosbuvir (SFB), by a simple electropolymerization step onto a disposable pencil graphite electrode (PGE) substrate. The interaction between methyldopa, as a functional monomer, and a template has been investigated experimentally by UV spectroscopy. A polymethyldopa (PMD) polymer was electrografted onto PGE in the presence of SFB as a template. X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (ESI), and cyclic voltammetry (CV) were used for the characterization of the fabricated sensor. Differential pulse voltammetry (DPV) of a ferrocyanide/ferricyanide redox probe was employed to indirectly detect the SFB binding to the MIP cavities. The sensor shows a reproducible and linear response over a dynamic linear range from 1.0 × 10-11 M to 1.0 × 10-13 M of SFB with a limit of detection of 3.1 × 10-14 M. The sensor showed high selectivity for the target drug over structurally similar and co-administered interfering drugs, and this enabled its application to detect SFB in its pharmaceutical dosage form and in spiked human plasma samples.

18.
J Pak Med Assoc ; 73(Suppl 4)(4): S52-S55, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37482830

RESUMEN

Objectives: To examine the C-X-C Motif Chemokine Receptor 1 expression in breast cancer tissues prior to neo-adjuvant chemotherapy, and its relationship to neo-adjuvant chemotherapy effectiveness and other prognostic variables. Method: The prospective study was conducted at Kafrelsheikh University Hospital, Egypt, from November 2018 to March 2021, and comprised patients with recent histopathologically proven breast cancer cases eligible for chemotherapy. Paraffin blocks of tumourspecimens were stained by immunohistochemicalstain using concentrating rabbit anti-human C-X-C Motif Chemokine Receptor 1 polyclonal antibody kits. C-X-C Motif Chemokine Receptor 1 expression was classified into low and high categories. Patients were followed for 2 years for treatment response, disease recurrence and mortality. Data was analysed using SPSS 25. RESULTS: Of the 100 females with mean age 50.2±12.1 years, 52(52%) had their left side affected, while 48(48%) had their rightside affected. There were 52(52%) cases with mean age 49.2±12.9 years having high C-X-C Motif Chemokine Receptor 1 expresssion, while 48(48%) with mean age 51.4±11.2 years had low expression. There was a significant association between high expression and advanced tumour grade, advanced tumourstage, higher frequency of triple negative breast cancer and higher frequency of Ki-67-positive cancers (p<0.05). Patients with high C-X-C Motif Chemokine Receptor 1 expression had significantly lower frequency of complete pathological response when compared with patients with low expression (p<0.001). Patients with high expression had higher frequency of recurrence, shorter disease-free survival, higher mortality and shorter overall survival, but the difference was not significant (p>0.05). Multivariate logistic regression analysis identified triple negative hormonal status (p=0.031) and high baseline C-X-C Motif Chemokine Receptor 1 expression (p<0.001) as significant predictors of complete pathological response. CONCLUSIONS: There was found to be a link between baseline C-X-C Motif Chemokine Receptor 1 expression in breast cancer tissues and pathological response to neoadjuvant therapy in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Adulto , Persona de Mediana Edad , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Estudios Prospectivos , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia , Pronóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Quimioterapia Adyuvante , Receptores de Quimiocina/uso terapéutico , Receptor ErbB-2/metabolismo
19.
J Pak Med Assoc ; 73(Suppl 4)(4): S200-S204, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37482858

RESUMEN

Objectives: To examine the chemokine receptor type 1 expression in breast cancer tissues before and after neoadjuvant chemotherapy, and its relationship with pathological response to neoadjuvant chemotherapy and other clinical variables. Method: The prospective study was conducted at Kafrelsheikh University Hospital, Egypt, from November 2018 to March 2021, and comprised female patients with new histopathologically proven breast cancer eligible for chemotherapy. Paraffin blocks of tumourspecimens were stained immunohistochemically using concentrated rabbit anti-human chemokine receptor type 1 polyclonal antibody kits. The patients were followed up for treatment response, disease recurrence and mortality. Data was analysed using SPSS 25. RESULTS: Of the 100 patients with mean age 50.2±12.1 years, 40(40%) in group A with mean age 55.1±9.3 showed marked response and 60(60%) in group B with mean age 47.0±12.7 yearsshowed mild/moderate response (p<0.001). Group A patients had significantly lower baseline and post-treatment chemokine receptor type 1 expression compared to group B patients (p<0.05). The change in chemokine receptor type 1 expression was not significantly different (p>0.05). Patients with tumour grade 3 had significantly higher baseline chemokine receptor type 1 expression compared to patients with tumour grade 2. Tumourstage and post-treatment chemokine receptor type 1 expression were also significantly interlinked (p<0.05). Multivariate regression analysisidentified patients'age, baseline chemokine receptor type 1 and post-treatment chemokine receptor type 1 expressions as predictors of treatment response. CONCLUSIONS: There was found to be an association between baseline and post-treatment chemokine receptor type 1 expression in breast cancer tissues and pathological response to neoadjuvant chemo therapy in such patients.


Asunto(s)
Relevancia Clínica , Terapia Neoadyuvante , Femenino , Conejos , Animales , Estudios Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia , Receptor ErbB-2/metabolismo
20.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513961

RESUMEN

Chemoinformatics involves integrating the principles of physical chemistry with computer-based and information science methodologies, commonly referred to as "in silico techniques", in order to address a wide range of descriptive and prescriptive chemistry issues, including applications to biology, drug discovery, and related molecular areas. On the other hand, the incorporation of machine learning has been considered of high importance in the field of drug design, enabling the extraction of chemical data from enormous compound databases to develop drugs endowed with significant biological features. The present review discusses the field of cheminformatics and proposes the use of virtual chemical libraries in virtual screening methods to increase the probability of discovering novel hit chemicals. The virtual libraries address the need to increase the quality of the compounds as well as discover promising ones. On the other hand, various applications of bioinformatics in disease classification, diagnosis, and identification of multidrug-resistant organisms were discussed. The use of ensemble models and brute-force feature selection methodology has resulted in high accuracy rates for heart disease and COVID-19 diagnosis, along with the role of special formulations for targeting meningitis and Alzheimer's disease. Additionally, the correlation between genomic variations and disease states such as obesity and chronic progressive external ophthalmoplegia, the investigation of the antibacterial activity of pyrazole and benzimidazole-based compounds against resistant microorganisms, and its applications in chemoinformatics for the prediction of drug properties and toxicity-all the previously mentioned-were presented in the current review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...