Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(31): e2301643, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37712605

RESUMEN

The development and clinical translation of small interfering RNA (siRNA) therapies remains challenging owing to their poor pharmacokinetics. 3D printing technology presents a great opportunity to fabricate personalized implants for local and sustained delivery of siRNA. Hydrogels can mimic the mechanical properties of tissues, avoiding the problems associated with rigid implants. Herein, a thermoresponsive composite hydrogel suitable for extrusion 3D-printing is formulated to fabricate controlled-release implants loaded with siRNA-Lipofectamine RNAiMAX complexes. A hydrogel matrix mainly composed of uncharged agarose to protect siRNA from decomplexation is selected. Additionally, pluronic F127 and gelatin are added to improve the printability, degradation, and cell adhesion to the implants. To avoid exposing siRNA to thermal stress during the printing process, a core-and-shell design is set up for the implants in which a core of siRNA-complexes loaded-pluronic F127 is printed without heat and enclosed with a shell comprising the thermoresponsive composite hydrogel. The release profile of siRNA-complexes is envisioned to be controlled by varying the printing patterns. The results reveal that the implants sustain siRNA release for one month. The intactness of the released siRNA-complexes is proven until the eighth day. Furthermore, by changing the printing patterns, the release profiles can be tailored.


Asunto(s)
Poloxámero , Impresión Tridimensional , ARN Interferente Pequeño , Preparaciones de Acción Retardada , Hidrogeles
2.
Adv Healthc Mater ; 12(10): e2202631, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571721

RESUMEN

The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Factores de Tiempo
3.
AAPS PharmSciTech ; 23(7): 243, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028598

RESUMEN

Hypericum perforatum (HP) is characterized by potent medicinal activity. However, the poor water solubility of many HP constituents limits their therapeutic effectiveness. Self-nanoemulsifying self-nanosuspension loaded with HP (HP.SNESNS) was formulated to improve the bioefficacy of HP. It was prepared using 10% triacetin, 57% Tween 20, and 33% PEG 400 and then incorporated with HP extract (100 mg/mL). HP.SNESNS demonstrated a bimodal size distribution (258.65 ± 29.35 and 9.08 ± 0.01 nm) corresponding to nanosuspension and nanoemulsion, respectively, a zeta potential of -8.03 mV, and an enhanced dissolution profile. Compared to the unformulated HP (100 mg/kg), HP.SNESNS significantly improved cardiac functions by decreasing the serum myocardial enzymes, nitric oxide (NO), and tumor necrosis factor- α (TNF-α) as well as restoring the heart tissue's normal architecture. Furthermore, it ameliorates anxiety, depressive-like behavior, and cognitive dysfunction by decreasing brain TNF-α, elevating neurotransmitters (norepinephrine and serotonin), and brain-derived neurotrophic factor (BDNF). In addition, HP.SNESNS augmented the immunohistochemical expression of cortical and hippocampal glial fibrillary acidic protein (GFAP) levels while downregulating the cortical Bcl-2-associated X protein (Bax) expression levels. Surprisingly, these protective activities were comparable to the HP (300 mg/kg). In conclusion, HP.SNESNS (100 mg/kg) exerted antidepressant and cardioprotective activities in the post-MI depression rat model.


Asunto(s)
Hypericum , Infarto del Miocardio , Animales , Antidepresivos , Depresión , Extractos Vegetales , Aceites de Plantas , Ratas , Factor de Necrosis Tumoral alfa
4.
Sci Rep ; 12(1): 12920, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902647

RESUMEN

During the current coronavirus disease 2019 (COVID-19) pandemic, symptoms of depression are commonly documented among both symptomatic and asymptomatic quarantined COVID-19 patients. Despite that many of the FDA-approved drugs have been showed anti-SARS-CoV-2 activity in vitro and remarkable efficacy against COVID-19 in clinical trials, no pharmaceutical products have yet been declared to be fully effective for treating COVID-19. Antidepressants comprise five major drug classes for the treatment of depression, neuralgia, migraine prophylaxis, and eating disorders which are frequently reported symptoms in COVID-19 patients. Herein, the efficacy of eight frequently prescribed FDA-approved antidepressants on the inhibition of both SARS-CoV-2 and MERS-CoV was assessed. Additionally, the in vitro anti-SARS-CoV-2 and anti-MERS-CoV activities were evaluated. Furthermore, molecular docking studies have been performed for these drugs against the spike (S) and main protease (Mpro) pockets of both SARS-CoV-2 and MERS-CoV. Results showed that Amitriptyline, Imipramine, Paroxetine, and Sertraline had potential anti-viral activities. Our findings suggested that the aforementioned drugs deserve more in vitro and in vivo studies targeting COVID-19 especially for those patients suffering from depression.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2
5.
Int J Pharm ; 614: 121459, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35026313

RESUMEN

Vitiligo is a common autoimmune skin disorder that is characterized by patchy depigmentation of the skin due to melanocytes and melanin loss. Herein, photodynamic therapy mediated 8-methoxypsoralen (8-MOP), has been used fortified with topical oleyl alcohol-based transethosomes; to overcome the poor solubility and adverse effects associated with 8-MOP oral delivery. A 23 factorial design was used to study the formulation variables. In vitro and ex-vivo characterization besides a clinical study were conducted to assess therapeutic efficacy of the formulation. Results revealed that transethosomes were superior to transfersomes regarding drug protection from degradation. The optimized transethosomal formulation, composed of 50 mg oleyl alcohol, 10 mg Tween 80® and 20% v/v ethanol, exhibited high entrapment efficiency (83.87 ± 4.1%) and drug loading (105.0 ± 0.2%). Moreover, it showed small vesicular size (265.0 ± 2.9 nm) and PDI (0.19). The formulation depicted core and shell structure, high deformability index (12.45 ± 0.7 mL/s) and high ex-vivo skin permeation. The topical application of the developed 8-MOP transethosomal gel enhanced the effect of NB UVB radiation in the treatment of vitiligo patients and exhibited no side effects. Hence, it can be used as a future strategy for delivering 8-MOP without the need of systemic application.


Asunto(s)
Fotoquimioterapia , Vitíligo , Administración Cutánea , Sistemas de Liberación de Medicamentos , Alcoholes Grasos , Humanos , Metoxaleno , Piel , Vitíligo/tratamiento farmacológico
6.
AAPS PharmSciTech ; 23(1): 44, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34966978

RESUMEN

Investigating bicelles as an oral drug delivery system and exploiting their structural benefits can pave the way to formulate hydrophobic drugs and potentiate their activity. Herein, the ability of non-ionic surfactants (labrasol®, tween 80, cremophore EL and pluronic F127) to form curcumin loaded bicelles with phosphatidylcholine, utilizing a simple method, was investigated. Molecular docking was used to understand the mechanism of bicelles formation. The % transmittance and TEM exhibited bicelles formation with labrasol® and tween 80, while cremophor EL and pluronic F127 tended to form mixed micelles. The surfactant-based nanostructures significantly improved curcumin dissolution (99.2 ± 2.6% within 10 min in case of tween 80-based bicelles) compared to liposomes and curcumin suspension in non-sink conditions. The prepared formulations improved curcumin ex vivo permeation over liposomes and drug suspension. Further, the therapeutic antiviral activity of the formulated curcumin against SARS-CoV-2 was potentiated over drug suspension. Although both Labrasol® and tween 80 bicelles could form bicelles and enhance the oral delivery of curcumin when compared to liposomes and drug suspension, the mixed micelles formulations depicted superiority than bicelles formulations. Our findings provide promising formulations that can be utilized for further preclinical and clinical studies of curcumin as an antiviral therapy for COVID-19 patients. Graphical Abstract.


Asunto(s)
COVID-19 , Curcumina , Antivirales , Estudios de Factibilidad , Humanos , Micelas , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Tensoactivos
7.
J Drug Deliv Sci Technol ; 66: 102845, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34539819

RESUMEN

The outbreak of coronavirus disease-2019, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a worldwide emerging crisis. Polyphenols are a class of herbal metabolites with a broad-spectrum antiviral activity. However, most polyphenols encounter limited efficacy due to their poor solubility and degradation in neutral and basic environments. Thus, the effectiveness of their pharmaceutical application is critically dependent on the delivery systems to overcome the aforementioned drawbacks. Herein, Polyphenols-rich Cuphea ignea extract was prepared and its constituents were identified and quantified. Molecular docking was conducted for 15 compounds in the extract against SARS-CoV-2 main protease, among which rutin, myricetin-3-O-rhamnoside and rosmarinic acid depicted the most promising antiviral activity. Further, a self-nanoemulsifying formulation, composed of 10% oleic acid, 40% tween 20 and propylene glycol 50%, was prepared to improve the solubility of the extract components and enable its concurrent delivery permitting combined potency. Upon dilution with aqueous phases, the formulation rapidly Formsnanoemulsion of good stability and excellent dissolution profile in acidic pH when compared to the crude extract. It inhibited SARS-CoV-2 completely in vitro at a concentration as low as 5.87 µg/mL presenting a promising antiviral remedy for SARS-CoV-2, which may be attributed to the possible synergism between the extract components.

8.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291642

RESUMEN

(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.

9.
Mol Pharm ; 17(10): 3952-3965, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32845650

RESUMEN

Drug repositioning is an important drug development strategy as it saves the time and efforts exerted in drug discovery. Since reepithelization of the cornea is a critical problem, we envisioned that the anticonvulsant phenytoin sodium can promote reepithelization of corneal ulcers as it was repurposed for skin wound healing. Herein, our aim is to develop novel crown ether-based nanovesicles "Crownsomes" of phenytoin sodium for ocular delivery with minimal drug-induced irritation and enhanced efficacy owing to "host-guest" properties of crown ethers. Crownsomes were successfully fabricated using span-60 and 18-crown-6 and their size, morphology, polydispersity index, ζ potential, drug loading efficiency, conductivity, and drug release were characterized. Crownsomes exhibited favorable properties such as formation of spherical nanovesicles of 280 ± 18 nm and -26.10 ± 1.21 mV surface charges. Crownsomes depicted a high entrapment efficiency (77 ± 5%) with enhanced and controlled-release pattern of phenytoin sodium. The optimum crownsomes formulation ameliorated ex vivo corneal drug permeability (1.78-fold than drug suspension) through the corneal calcium extraction ability of 18-crown-6. In vivo study was conducted utilizing an alkali-induced corneal injury rabbit model. Clinical and histopathological examination confirmed that crownsomes exhibited better biocompatibility and minimal irritation due to complex formation and drug shielding. Further, they enhanced corneal healing, indicating their effectiveness as a novel drug delivery system for ocular diseases.


Asunto(s)
Úlcera de la Córnea/tratamiento farmacológico , Éteres Corona/química , Portadores de Fármacos/química , Fenitoína/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Administración Oftálmica , Animales , Córnea/efectos de los fármacos , Córnea/patología , Úlcera de la Córnea/inducido químicamente , Úlcera de la Córnea/patología , Modelos Animales de Enfermedad , Liberación de Fármacos , Reposicionamiento de Medicamentos , Humanos , Nanopartículas/química , Soluciones Oftálmicas , Tamaño de la Partícula , Permeabilidad , Fenitoína/efectos adversos , Fenitoína/farmacocinética , Procaína/administración & dosificación , Procaína/análogos & derivados , Procaína/toxicidad , Conejos
10.
J Genet Eng Biotechnol ; 18(1): 35, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32725286

RESUMEN

BACKGROUND: The current outbreak of pandemic coronavirus disease 2019 (COVID-19) aggravates serious need for effective therapeutics. Over recent years, drug repurposing has been accomplished as an important opportunity in drug development as it shortens the time consumed for development, besides sparing the cost and the efforts exerted in the research and development process. The FDA-approved antiparasitic drug, nitazoxanide (NTZ), has been found to have antiviral activity against different viral infections such as coronaviruses, influenza, hepatitis C virus (HCV), hepatitis B virus (HBV), and other viruses signifying its potential as a broad spectrum antiviral drug. Moreover, it has been recently reported that NTZ exhibited in vitro inhibition of SARS-CoV-2 at a small micromolar concentration. Additionally, NTZ suppresses the production of cytokines emphasizing its potential to manage COVID-19-induced cytokine storm. Furthermore, the reported efficacy of NTZ to bronchodilate the extremely contracted airways can be beneficial in alleviating COVID-19-associated symptoms. SHORT CONCLUSION: All these findings, along with the high safety record of the drug, have gained our interest to urge conductance of clinical trials to assess the potential benefits of using it in COVID-19 patients. Thus, in this summarized article, we review the antiviral activities of NTZ and highlight its promising therapeutic actions that make the drug worth clinical trials.

11.
J Pharm Sci ; 108(2): 897-906, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267785

RESUMEN

Ion cross-linking in situ gels are novel liquid sustained-release drug delivery systems. These systems are unsuitable for poorly water-soluble drugs such as the novel antidiabetic drug mitiglinide calcium (MTG). Thus, our goal was to assess the possibility of using cosolvency approach in formulating gastroretentive in situ gel of the short half-life MTG to simultaneously enhance its bioavailability and sustain its release. MTG in situ gel formulations were developed using propylene glycol as a cosolvent to dissolve MTG in the polymer solution, followed by characterization of viscosity, gel strength, floating ability, and in vitro MTG release and phramacokinetics evaluation. The optimized formulation (composition: 1% gellan gum, 0.75% sodium alginate, 0.75% calcium carbonate, and 7.5% propylene glycol) exhibited reasonable viscosity but on introduction into simulated gastric fluid, it formed firm gel that floated within seconds over the surface and remained buoyant for 24 h. The formula exhibited in vivo sustained release manner of MTG over 24 h and improved the bioavailability of the drug. Thus, cosolvency presents a promising approach to deliver hydrophobic drugs in sustained-release liquid formulations. These formulations will improve diabetic patients' compliance by eliminating the necessity of frequent dosing with a better disease management.


Asunto(s)
Preparaciones de Acción Retardada/química , Geles/química , Hipoglucemiantes/administración & dosificación , Isoindoles/administración & dosificación , Alginatos/química , Animales , Disponibilidad Biológica , Liberación de Fármacos , Hipoglucemiantes/farmacocinética , Isoindoles/farmacocinética , Polisacáridos Bacterianos/química , Conejos , Viscosidad
12.
Int J Pharm ; 476(1-2): 60-9, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25269009

RESUMEN

The current investigation was aimed to improve the solubility of poorly soluble drug, cilostazol (CLZ). Self-nanoemulsifying drug delivery system (SNEDDS) composed of oil, surfactant and co-surfactant for both oral and parenteral administration of CLZ was formulated. The components for SNEDDS were identified by solubility studies, and pseudo-ternary phase diagrams were plotted to identify the efficient self-emulsification regions. The optimum formula, composed of Capryol 90 as an oil phase, Cremophor EL as a surfactant, and Transcutol HP as a co-surfactant in a ratio of 19.8:30.5:49.7 by weight, was able to solubilize CLZ 2000 times higher than its solubility in water. This formula was able to form grade "A" nanoemulsion when diluted with water, resulted in emulsification time of 50±1.1 s, particle size of 14.3 nm, PDI of 0.5 and % transmittance was 97.40%±0.65. It showed excellent in vitro dissolution of 93.1% and 81.5% after 5 min in 0.3% sodium lauryl sulphate solution and phosphate buffer pH 6.4, respectively when compared with the marketed tablet formulation and drug suspension as the tablets showed only 44.3% and 9.9% while CLZ suspension showed 33.9% and 8.8% in 0.3% sodium lauryl sulphate solution and phosphate buffer pH 6.4, respectively. It was found to be robust to dilution, thermodynamically stable with low viscosity values of 14.20±0.35 cP. In vivo study revealed significant increase in bioavailability of CLZ in rabbits to 3.94 fold compared with the marketed tablet formulation after oral administration. This formula could be sterilized by autoclaving and did not cause significant hemolysis to human blood which indicates its safety for intravenous administration with a 1.12 fold increase in bioavailability compared with its oral administration. Our study illustrated the potential use of SNEDDS of poorly soluble CLZ orally, and its successful administration of parenterally when required in acute cases of myocardial and cerebral infarction.


Asunto(s)
Sistemas de Liberación de Medicamentos , Inhibidores de Agregación Plaquetaria/administración & dosificación , Tensoactivos/química , Tetrazoles/administración & dosificación , Administración Intravenosa , Administración Oral , Animales , Disponibilidad Biológica , Química Farmacéutica/métodos , Cilostazol , Emulsiones , Humanos , Tamaño de la Partícula , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacocinética , Conejos , Solubilidad , Comprimidos , Tetrazoles/química , Tetrazoles/farmacocinética , Termodinámica , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA