Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Thorac Cancer ; 15(11): 895-905, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456253

RESUMEN

BACKGROUND: Programmed death ligand-1 (PD-L1) expression is a well-known predictive biomarker of response to immune checkpoint blockade in non-small cell lung cancer (NSCLC). However, there is limited evidence of the relationship between PD-L1 expression, clinicopathological features, and their association with major driver mutations in NSCLC patients in Latin America. METHODS: This retrospective study included patients from Argentina with advanced NSCLC, and centralized evaluation of PD-L1 expression concurrently with genomic alterations in the driver genes EGFR, ALK, ROS1, BRAF, and/or KRAS G12C in FFPE tissue samples. RESULTS: A total of 10 441 patients with advanced NSCLC were analyzed. Adenocarcinoma was the most frequent histological subtype (71.1%). PD-L1 expression was categorized as PD-L1 negative (45.1%), PD-L1 positive low-expression 1%-49% (32.3%), and PD-L1 positive high-expression ≥50% (22.6%). Notably, current smokers and males were more likely to have tumors with PD-L1 tumor proportion score (TPS) ≥50% and ≥ 80% expression, respectively (p < 0.001 and p = 0.013). Tumors with non-adenocarcinoma histology had a significantly higher median PD-L1 expression (p < 0.001). Additionally, PD-L1 in distant nodes was more likely ≥50% (OR 1.60 [95% CI: 1.14-2.25, p < 0.01]). In the multivariate analysis, EGFR-positive tumors were more commonly associated with PD-L1 low expression (OR 0.62 [95% CI: 0.51-0.75], p < 0.01), while ALK-positive tumors had a significant risk of being PD-L1 positive (OR 1.81 [95% CI: 1.30-2.52], p < 0.01). CONCLUSIONS: PD-L1 expression was associated with well-defined clinicopathological and genomic features. These findings provide a comprehensive view of the expression of PD-L1 in patients with advanced NSCLC in a large Latin American cohort.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Estudios Retrospectivos , Quinasa de Linfoma Anaplásico/genética , Proteínas Proto-Oncogénicas/genética , Adenocarcinoma/genética , Mutación , Receptores ErbB/genética
2.
Glycobiology ; 33(11): 855-860, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37584473

RESUMEN

Cell surface glycans play essential roles in diverse physiological and pathological processes and their assessment has important implications in biomedicine and biotechnology. Here we present a rapid, versatile, and single-step multicolor flow cytometry method for evaluation of cell surface glycan signatures using a panel of selected fluorochrome-conjugated lectins. This procedure allows simultaneous detection of cell surface glycans with a 10-fold reduction in the number of cells required compared with traditional multistep lectin staining methods. Interestingly, we used this one-step lectin array coupled with dimension reduction algorithms in a proof-of-concept application for discrimination among different tumor and immune cell populations. Moreover, this procedure was also able to unveil T-, B-, and myeloid cell subclusters exhibiting differential glycophenotypes. Thus, we report a rapid and versatile lectin cytometry method to simultaneously detect a particular repertoire of surface glycans on living cells that can be easily implemented in different laboratories and core facilities.


Asunto(s)
Colorantes Fluorescentes , Lectinas , Lectinas/metabolismo , Polisacáridos/metabolismo , Membrana Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(3): e2214350120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634146

RESUMEN

Blockade of vascular endothelial growth factor (VEGF) signaling with bevacizumab, a humanized anti-VEGF monoclonal antibody (mAb), or with receptor tyrosine kinase inhibitors, has improved progression-free survival and, in some indications, overall survival across several types of cancers by interrupting tumor angiogenesis. However, the clinical benefit conferred by these therapies is variable, and tumors from treated patients eventually reinitiate growth. Previously we demonstrated, in mouse tumor models, that galectin-1 (Gal1), an endogenous glycan-binding protein, preserves angiogenesis in anti-VEGF-resistant tumors by co-opting the VEGF receptor (VEGFR)2 signaling pathway in the absence of VEGF. However, the relevance of these findings in clinical settings is uncertain. Here, we explored, in a cohort of melanoma patients from AVAST-M, a multicenter, open-label, randomized controlled phase 3 trial of adjuvant bevacizumab versus standard surveillance, the role of circulating plasma Gal1 as part of a compensatory mechanism that orchestrates endothelial cell programs in bevacizumab-treated melanoma patients. We found that increasing Gal1 levels over time in patients in the bevacizumab arm, but not in the observation arm, significantly increased their risks of recurrence and death. Remarkably, plasma Gal1 was functionally active as it was able to reprogram endothelial cell biology, promoting migration, tubulogenesis, and VEGFR2 phosphorylation. These effects were prevented by blockade of Gal1 using a newly developed fully human anti-Gal1 neutralizing mAb. Thus, using samples from a large-scale clinical trial from stage II and III melanoma patients, we validated the clinical relevance of Gal1 as a potential mechanism of resistance to bevacizumab treatment.


Asunto(s)
Melanoma , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Galectina 1 , Melanoma/tratamiento farmacológico , Melanoma/patología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Células Endoteliales/patología , Factores de Crecimiento Endotelial Vascular , Biología , Inhibidores de la Angiogénesis/farmacología
4.
Cancers (Basel) ; 13(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804419

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors usually diagnosed at an advanced stage and characterized by a poor prognosis. The main risk factors associated with its development include tobacco and alcohol consumption and Human Papillomavirus (HPV) infections. The immune system has a significant role in the oncogenesis and evolution of this cancer type. Notably, the immunosuppressive tumor microenvironment triggers immune escape through several mechanisms. The improved understanding of the antitumor immune response in solid tumors and the role of the immune checkpoint molecules and other immune regulators have led to the development of novel therapeutic strategies that revolutionized the clinical management of HNSCC. However, the limited overall response rate to immunotherapy urges identifying predictive biomarkers of response and resistance to treatment. Here, we review the role of the immune system and immune checkpoint pathways in HNSCC, the most relevant clinical findings linked to immunotherapeutic strategies and predictive biomarkers of response and future treatment perspectives.

5.
Glycobiology ; 31(8): 891-907, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-33498084

RESUMEN

The relevance of glycan-binding proteins in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins, both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain, atypical secretion via an endoplasmic reticulum-Golgi-independent pathway and by the ability to recognize ß-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family, displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to delineate tailored therapeutic strategies aimed at positively or negatively modulating this glycan-binding protein in pathologic inflammatory conditions.


Asunto(s)
Galectina 1 , Galectinas , Carbohidratos , Galectina 1/genética , Galectinas/metabolismo , Humanos , Inflamación/metabolismo , Polisacáridos/metabolismo
6.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33320931

RESUMEN

The accurate quantification of tumor-infiltrating immune cells turns crucial to uncover their role in tumor immune escape, to determine patient prognosis and to predict response to immune checkpoint blockade. Current state-of-the-art methods that quantify immune cells from tumor biopsies using gene expression data apply computational deconvolution methods that present multicollinearity and estimation errors resulting in the overestimation or underestimation of the diversity of infiltrating immune cells and their quantity. To overcome such limitations, we developed MIXTURE, a new ν-support vector regression-based noise constrained recursive feature selection algorithm based on validated immune cell molecular signatures. MIXTURE provides increased robustness to cell type identification and proportion estimation, outperforms the current methods, and is available to the wider scientific community. We applied MIXTURE to transcriptomic data from tumor biopsies and found relevant novel associations between the components of the immune infiltrate and molecular subtypes, tumor driver biomarkers, tumor mutational burden, microsatellite instability, intratumor heterogeneity, cytolytic score, programmed cell death ligand 1 expression, patients' survival and response to anti-cytotoxic T-lymphocyte-associated antigen 4 and anti-programmed cell death protein 1 immunotherapy.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica/inmunología , Inmunoterapia , Modelos Inmunológicos , Neoplasias , Máquina de Vectores de Soporte , Transcriptoma/inmunología , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia
7.
Cancer Cell ; 35(5): 767-781.e6, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31085177

RESUMEN

Although immune checkpoint blockers have yielded significant clinical benefits in patients with different malignancies, the efficacy of these therapies is still limited. Here, we show that disruption of transmembrane protein 176B (TMEM176B) contributes to CD8+ T cell-mediated tumor growth inhibition by unleashing inflammasome activation. Lack of Tmem176b enhances the antitumor activity of anti-CTLA-4 antibodies through mechanisms involving caspase-1/IL-1ß activation. Accordingly, patients responding to checkpoint blockade therapies display an activated inflammasome signature. Finally, we identify BayK8644 as a potent TMEM176B inhibitor that promotes CD8+ T cell-mediated tumor control and reinforces the antitumor activity of both anti-CTLA-4 and anti-PD-1 antibodies. Thus, pharmacologic de-repression of the inflammasome by targeting TMEM176B may enhance the therapeutic efficacy of immune checkpoint blockers.


Asunto(s)
Antineoplásicos/farmacología , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Proteínas de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Células CHO , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cricetulus , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA