Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Heliyon ; 10(10): e30740, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38770342

RESUMEN

Malaria, a major public health burden, is caused by Plasmodium spp parasites that first replicate in the human liver to establish infection before spreading to erythrocytes. Liver-stage malaria research has remained challenging due to the lack of a clinically relevant and scalable in vitro model of the human liver. Here, we demonstrate that organoids derived from intrahepatic ductal cells differentiated into a hepatocyte-like fate can support the infection and intrahepatic maturation of Plasmodium falciparum. The P.falciparum exoerythrocytic forms observed expressed both early and late-stage parasitic proteins and decreased in frequency in response to treatment with both known and putative antimalarial drugs that target intrahepatic P.falciparum. The P.falciparum-infected human liver organoids thus provide a platform not only for fundamental studies that characterise intrahepatic parasite-host interaction but can also serve as a powerful translational tool in pre-erythrocytic vaccine development and to identify new antimalarial drugs that target the liver stage infection.

2.
Cancer Res ; 84(10): 1699-1718, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38535994

RESUMEN

There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable. Using the multiomic assessment of cisplatin-responsive and -resistant human bladder cancer cell lines and whole-genome CRISPR screens, we identified puromycin-sensitive aminopeptidase (NPEPPS) as a driver of cisplatin resistance. NPEPPS depletion sensitized resistant bladder cancer cells to cisplatin in vitro and in vivo. Conversely, overexpression of NPEPPS in sensitive cells increased cisplatin resistance. NPEPPS affected treatment response by regulating intracellular cisplatin concentrations. Patient-derived organoids (PDO) generated from bladder cancer samples before and after cisplatin-based treatment, and from patients who did not receive cisplatin, were evaluated for sensitivity to cisplatin, which was concordant with clinical response. In the PDOs, depletion or pharmacologic inhibition of NPEPPS increased cisplatin sensitivity, while NPEPPS overexpression conferred resistance. Our data present NPEPPS as a druggable driver of cisplatin resistance by regulating intracellular cisplatin concentrations. SIGNIFICANCE: Targeting NPEPPS, which induces cisplatin resistance by controlling intracellular drug concentrations, is a potential strategy to improve patient responses to platinum-based therapies and lower treatment-associated toxicities.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Ratones , Línea Celular Tumoral , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Organoides/efectos de los fármacos , Organoides/metabolismo
3.
iScience ; 27(3): 109152, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384833

RESUMEN

HIV-1 latency results from tightly regulated molecular processes that act at distinct steps of HIV-1 gene expression. Here, we characterize PCI domain-containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2) complex, to enforce transcriptional repression and post-transcriptional blocks to HIV-1 gene expression during latency. PCID2 bound the latent HIV-1 LTR (long terminal repeat) and repressed transcription initiation during latency. Depletion of PCID2 remodeled the chromatin landscape at the HIV-1 promoter and resulted in transcriptional activation and latency reversal. Immunoprecipitation coupled to mass spectrometry identified PCID2-interacting proteins to include negative viral RNA (vRNA) splicing regulators, and PCID2 depletion resulted in over-splicing of intron-containing vRNA in cell lines and primary cells obtained from PWH. MCM3AP and DSS1, two other RNA-binding TREX2 complex subunits, also inhibit transcription initiation and vRNA alternative splicing during latency. Thus, PCID2 is a novel HIV-1 latency-promoting factor, which in context of the TREX2 sub-complex PCID2-DSS1-MCM3AP blocks transcription and dysregulates vRNA processing.

4.
mBio ; : e0131823, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938000

RESUMEN

Hepatitis C virus (HCV) is the leading cause of death from liver disease. How HCV infection causes lasting liver damage and increases cancer risk remains unclear. Here, we identify bipotent liver stem cells as novel targets for HCV infection, and their erroneous differentiation as the potential cause of impaired liver regeneration and cancer development. We show 3D organoids generated from liver stem cells from actively HCV-infected individuals carry replicating virus and maintain low-grade infection over months. Organoids can be infected with a primary HCV isolate. Virus-inclusive single-cell RNA sequencing uncovered transcriptional reprogramming in HCV+ cells supporting hepatocytic differentiation, cancer stem cell development, and viral replication while stem cell proliferation and interferon signaling are disrupted. Our data add a new pathogenesis mechanism-infection of liver stem cells-to the biology of HCV infection that may explain progressive liver damage and enhanced cancer risk through an altered stem cell state.ImportanceThe hepatitis C virus (HCV) causes liver disease, affecting millions. Even though we have effective antivirals that cure HCV, they cannot stop terminal liver disease. We used an adult stem cell-derived liver organoid system to understand how HCV infection leads to the progression of terminal liver disease. Here, we show that HCV maintains low-grade infections in liver organoids for the first time. HCV infection in liver organoids leads to transcriptional reprogramming causing cancer cell development and altered immune response. Our finding shows how HCV infection in liver organoids mimics HCV infection and patient pathogenesis. These results reveal that HCV infection in liver organoids contributes to liver disease progression.

5.
J Virus Erad ; 9(3): 100342, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37663575

RESUMEN

Introduction: Understanding the clinical potency of latency-reversing agents (LRAs) on the HIV-1 reservoir is useful to deploy future strategies. This systematic review evaluated the effects of LRAs in human intervention studies. Methods: A literature search was performed using medical databases focusing on studies with adults living with HIV-1 receiving LRAs. Eligibility criteria required participants from prospective clinical studies, a studied compound hypothesised as LRA, and reactivation or tolerability assessments. Relevant demographical data, LRA reactivation capacity, reservoir size, and adverse events were extracted. A study quality assessment with analysis of bias was performed by RoB 2 and ROBINS-I tools. The primary endpoints were HIV-1 reservoir reactivation after LRA treatment quantified by cell-associated unspliced HIV-1 RNA, and LRA tolerability defined by adverse events. Secondary outcomes were reservoir size and the effect of LRAs on analytical treatment interruption (ATI) duration. Results: After excluding duplicates, 5182 publications were screened. In total 45 publications fulfilled eligibility criteria including 26 intervention studies and 16 randomised trials. The risk of bias was evaluated as high. Chromatin modulators were the main investigated LRA class in 24 studies. Participants were mostly males (90.1%). Where reported, HIV-1 subtype B was most frequently observed. Reactivation after LRA treatment occurred in 78% of studies and was observed with nearly all chromatin modulators. When measured, reactivation mostly occurred within 24 h after treatment initiation. Combination LRA strategies have been infrequently studied and were without synergistic reactivation. Adverse events, where reported, were mostly low grade, yet occurred frequently. Seven studies had individuals who discontinued LRAs for related adverse events. The reservoir size was assessed by HIV-1 DNA in 80% of studies. A small decrease in reservoir was observed in three studies on immune checkpoint inhibitors and the histone deacetylase inhibitors romidepsin and chidamide. No clear effect of LRAs on ATI duration was observed. Conclusion: This systematic review provides a summary of the reactivation of LRAs used in current clinical trials whilst highlighting the importance of pharmacovigilance. Highly heterogeneous study designs and underrepresentation of relevant patient groups are to be considered when interpreting these results. The observed reactivation did not lead to cure or a significant reduction in the size of the reservoir. Finding more effective LRAs by including well-designed studies are needed to define the required reactivation level to reduce the HIV-1 reservoir.

6.
Sci Transl Med ; 15(697): eabn4118, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224225

RESUMEN

The recommended treatment for patients with high-risk non-muscle-invasive bladder cancer (HR-NMIBC) is tumor resection followed by adjuvant Bacillus Calmette-Guérin (BCG) bladder instillations. However, only 50% of patients benefit from this therapy. If progression to advanced disease occurs, then patients must undergo a radical cystectomy with risks of substantial morbidity and poor clinical outcome. Identifying tumors unlikely to respond to BCG can translate into alternative treatments, such as early radical cystectomy, targeted therapies, or immunotherapies. Here, we conducted molecular profiling of 132 patients with BCG-naive HR-NMIBC and 44 patients with recurrences after BCG (34 matched), which uncovered three distinct BCG response subtypes (BRS1, 2 and BRS3). Patients with BRS3 tumors had a reduced recurrence-free and progression-free survival compared with BRS1/2. BRS3 tumors expressed high epithelial-to-mesenchymal transition and basal markers and had an immunosuppressive profile, which was confirmed with spatial proteomics. Tumors that recurred after BCG were enriched for BRS3. BRS stratification was validated in a second cohort of 151 BCG-naive patients with HR-NMIBC, and the molecular subtypes outperformed guideline-recommended risk stratification based on clinicopathological variables. For clinical application, we confirmed that a commercially approved assay was able to predict BRS3 tumors with an area under the curve of 0.87. These BCG response subtypes will allow for improved identification of patients with HR-NMIBC at the highest risk of progression and have the potential to be used to select more appropriate treatments for patients unlikely to respond to BCG.


Asunto(s)
Neoplasias Vesicales sin Invasión Muscular , Neoplasias de la Vejiga Urinaria , Humanos , Vacuna BCG/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Bioensayo
7.
Sci Adv ; 9(11): eade6675, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36921041

RESUMEN

Reactivation of the latent HIV-1 reservoir is a first step toward triggering reservoir decay. Here, we investigated the impact of the BAF complex inhibitor pyrimethamine on the reservoir of people living with HIV-1 (PLWH). Twenty-eight PLWH on suppressive antiretroviral therapy were randomized (1:1:1:1 ratio) to receive pyrimethamine, valproic acid, both, or no intervention for 14 days. The primary end point was change in cell-associated unspliced (CA US) HIV-1 RNA at days 0 and 14. We observed a rapid, modest, and significant increase in (CA US) HIV-1 RNA in response to pyrimethamine exposure, which persisted throughout treatment and follow-up. Valproic acid treatment alone did not increase (CA US) HIV-1 RNA or augment the effect of pyrimethamine. Pyrimethamine treatment did not result in a reduction in the size of the inducible reservoir. These data demonstrate that the licensed drug pyrimethamine can be repurposed as a BAF complex inhibitor to reverse HIV-1 latency in vivo in PLWH, substantiating its potential advancement in clinical studies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , ARN , Ácido Valproico/farmacología , Activación Viral , Latencia del Virus
8.
Fungal Divers ; 116(1): 547-614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36123995

RESUMEN

Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.

9.
Front Cell Infect Microbiol ; 12: 855092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774399

RESUMEN

HIV-1 infection remains non-curative due to the latent reservoir, primarily a small pool of resting memory CD4+ T cells bearing replication-competent provirus. Pharmacological reversal of HIV-1 latency followed by intrinsic or extrinsic cell killing has been proposed as a promising strategy to target and eliminate HIV-1 viral reservoirs. Latency reversing agents have been extensively studied for their role in reactivating HIV-1 transcription in vivo, although no permanent reduction of the viral reservoir has been observed thus far. This is partly due to the complex nature of latency, which involves strict intrinsic regulation at multiple levels at transcription and RNA processing. Still, the molecular mechanisms that control HIV-1 latency establishment and maintenance have been almost exclusively studied in the context of chromatin remodeling, transcription initiation and elongation and most known LRAs target LTR-driven transcription by manipulating these. RNA metabolism is a largely understudies but critical mechanistic step in HIV-1 gene expression and latency. In this review we provide an update on current knowledge on the role of RNA processing mechanisms in viral gene expression and latency and speculate on the possible manipulation of these pathways as a therapeutic target for future cure studies.


Asunto(s)
Infecciones por VIH , VIH-1 , Hibernación , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , ARN/metabolismo , ARN Viral/genética , Activación Viral , Latencia del Virus/genética
10.
Bio Protoc ; 12(8): e4392, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35800100

RESUMEN

The absence of long term, primary untransformed in vitro models that support hepatitis B virus (HBV) infection and replication have hampered HBV pre-clinical research, which was reflected in the absence of a curative therapy until recently. One of the limitations for in vitro HBV research has been the absence of high titer and pure recombinant HBV stocks, which, as we describe here, can be generated using simple, and reproducible protocols. In addition to infection of more conventional in vitro and in vivo liver model systems, recombinant high titer purified HBV stocks can also be used to efficiently infect differentiated human liver organoids, whose generation, maintenance, and infection is discussed in detail in a companion organoid protocol. Here, we also describe the protocols for the detection of specific viral read-outs, including HBV DNA in the supernatant of the cultures, covalently closed circular DNA (cccDNA) from intracellular DNA preparations, and HBV viral proteins and viral RNA, which can be detected within the cells, demonstrating the presence of a complete viral replication cycle in infected liver organoids. Although an evolving platform, the human liver organoid model system presents great potential as an exciting new tool to study HBV infection and progression to hepatocellular carcinoma (HCC) in primary cells, when combined with the use of high-titer and pure recombinant HBV stock for infection. Graphical abstract.

11.
Front Cell Dev Biol ; 10: 917599, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769258

RESUMEN

In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.

12.
Nucleic Acids Res ; 50(10): 5577-5598, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640596

RESUMEN

A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5'LTR. Catchet-MS identified known and novel latent 5'LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+ T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/genética , Humanos , Factor de Transcripción Ikaros/genética , Provirus/genética , Talidomida/metabolismo , Talidomida/farmacología , Factores de Transcripción/metabolismo , Activación Viral , Latencia del Virus
13.
Bio Protoc ; 12(6): e4358, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35434190

RESUMEN

Hepatitis B virus (HBV) infection represents a major public health problem infecting approximately 400 million people worldwide. Despite the availability of a preventive vaccine and anti-viral therapies, chronic HBV infection remains a major health issue because it increases the risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). The lack of a relevant in vitro model for the study of the molecular mechanisms that drive HBV replication and latency, as well as HBV-related carcinogenesis, has been one of the major obstacles to the development of curative strategies. Here, we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. Human liver organoids can be seeded from both healthy and cirrhotic liver biopsies. They can be expanded in vitro when culturing in a medium containing a specific set of growth factors. When the culture medium is changed into a new medium containing growth factors that promote differentiation, organoids differentiate into functional hepatocytes, which makes them susceptible to infection with recombinant HBV. The novel in vitro primary model system described in this protocol can be utilized as a platform to study HBV pathogenesis and drug screening. Organoids generated from cirrhotic liver biopsies can be a potential tool for personalized medicine, and for modeling HCC and other liver diseases. Graphic abstract.

14.
mBio ; 12(6): e0298021, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34872356

RESUMEN

To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5' long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4+ T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4+ T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4+ T cells, and crucially in CD4+ T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency. IMPORTANCE A reservoir of latent HIV-1 infected cells persists in the presence of combination antiretroviral therapy (cART), representing a major obstacle for viral eradication. Reactivation of the latent HIV-1 provirus is part of curative strategies which aim to promote clearance of the infected cells. Using a two-color haploid screen, we identified 69 candidate genes as latency-maintaining host factors and functionally validated a subset of 10 of those in additional T-cell-based cell line models of HIV-1 latency. We further demonstrated that CHD9 is associated with HIV-1's promoter, the 5' LTR, while this association is lost upon reactivation. Additionally, we characterized the latency reversal potential of FDA compounds targeting ADK, NF1, and GRIK5 and identify the GRIK5 inhibitor topiramate as a viable latency reversal agent with clinical potential.


Asunto(s)
Infecciones por VIH/genética , VIH-1/fisiología , Haploidia , Latencia del Virus , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Activación Viral
15.
Elife ; 102021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34328417

RESUMEN

The molecular events that drive hepatitis B virus (HBV)-mediated transformation and tumorigenesis have remained largely unclear, due to the absence of a relevant primary model system. Here we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. We first describe a primary ex vivo HBV-infection model derived from healthy donor liver organoids after challenge with recombinant virus or HBV-infected patient serum. HBV-infected organoids produced covalently closed circular DNA (cccDNA) and HBV early antigen (HBeAg), expressed intracellular HBV RNA and proteins, and produced infectious HBV. This ex vivo HBV-infected primary differentiated hepatocyte organoid platform was amenable to drug screening for both anti-HBV activity and drug-induced toxicity. We also studied HBV replication in transgenically modified organoids; liver organoids exogenously overexpressing the HBV receptor sodium taurocholate co-transporting polypeptide (NTCP) after lentiviral transduction were not more susceptible to HBV, suggesting the necessity for additional host factors for efficient infection. We also generated transgenic organoids harboring integrated HBV, representing a long-term culture system also suitable for viral production and the study of HBV transcription. Finally, we generated HBV-infected patient-derived liver organoids from non-tumor cirrhotic tissue of explants from liver transplant patients. Interestingly, transcriptomic analysis of patient-derived liver organoids indicated the presence of an aberrant early cancer gene signature, which clustered with the hepatocellular carcinoma (HCC) cohort on The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset and away from healthy liver tissue, and may provide invaluable novel biomarkers for the development of HCC and surveillance in HBV-infected patients.


Asunto(s)
Carcinoma Hepatocelular/virología , Hepatitis B/virología , Neoplasias Hepáticas/virología , Organoides/virología , Células Hep G2 , Hepatitis B/complicaciones , Virus de la Hepatitis B/patogenicidad , Humanos , Hígado/patología , Hígado/virología , Donadores Vivos , Modelos Biológicos , Replicación Viral
16.
Cell Death Dis ; 12(7): 641, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162831

RESUMEN

A major unmet clinical need is a therapeutic capable of removing hepatitis B virus (HBV) genome from the liver of infected individuals to reduce their risk of developing liver cancer. A strategy to deliver such a therapy could utilize the ability to target and promote apoptosis of infected hepatocytes. Presently there is no clinically relevant strategy that has been shown to effectively remove persistent episomal covalently closed circular HBV DNA (cccDNA) from the nucleus of hepatocytes. We used linearized single genome length HBV DNA of various genotypes to establish a cccDNA-like reservoir in immunocompetent mice and showed that clinical-stage orally administered drugs that antagonize the function of cellular inhibitor of apoptosis proteins can eliminate HBV replication and episomal HBV genome in the liver. Primary human liver organoid models were used to confirm the clinical relevance of these results. This study underscores a clinically tenable strategy for the potential elimination of chronic HBV reservoirs in patients.


Asunto(s)
Antivirales/farmacología , Azocinas/farmacología , Compuestos de Bencidrilo/farmacología , Genoma Viral , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Hepatocitos/efectos de los fármacos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Hígado/efectos de los fármacos , Tiazoles/farmacología , Animales , Modelos Animales de Enfermedad , Células Hep G2 , Hepatitis B/metabolismo , Hepatitis B/patología , Hepatitis B/virología , Virus de la Hepatitis B/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Hígado/metabolismo , Hígado/patología , Hígado/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Organoides , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral/efectos de los fármacos
17.
Nat Commun ; 12(1): 2475, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931637

RESUMEN

An innovative approach to eliminate HIV-1-infected cells emerging out of latency, the major hurdle to HIV-1 cure, is to pharmacologically reactivate viral expression and concomitantly trigger intracellular pro-apoptotic pathways in order to selectively induce cell death (ICD) of infected cells, without reliance on the extracellular immune system. In this work, we demonstrate the effect of DDX3 inhibitors on selectively inducing cell death in latent HIV-1-infected cell lines, primary CD4+ T cells and in CD4+ T cells from cART-suppressed people living with HIV-1 (PLWHIV). We used single-cell FISH-Flow technology to characterise the contribution of viral RNA to inducing cell death. The pharmacological targeting of DDX3 induced HIV-1 RNA expression, resulting in phosphorylation of IRF3 and upregulation of IFNß. DDX3 inhibition also resulted in the downregulation of BIRC5, critical to cell survival during HIV-1 infection, and selectively induced apoptosis in viral RNA-expressing CD4+ T cells but not bystander cells. DDX3 inhibitor treatment of CD4+ T cells from PLWHIV resulted in an approximately 50% reduction of the inducible latent HIV-1 reservoir by quantitation of HIV-1 RNA, by FISH-Flow, RT-qPCR and TILDA. This study provides proof of concept for pharmacological reversal of latency coupled to induction of apoptosis towards the elimination of the inducible reservoir.


Asunto(s)
Apoptosis/efectos de los fármacos , Azepinas/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , ARN Helicasas DEAD-box/metabolismo , Infecciones por VIH/inmunología , VIH-1/metabolismo , Imidazoles/farmacología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antirretrovirales/farmacología , Apoptosis/genética , Azepinas/química , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/química , Inhibidores Enzimáticos/farmacología , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Imidazoles/química , Hibridación Fluorescente in Situ , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Células Jurkat , Simulación del Acoplamiento Molecular , ARN Viral/metabolismo , Análisis de la Célula Individual , Survivin/metabolismo , Activación Viral/efectos de los fármacos , Replicación Viral/genética
18.
Dev Biol ; 475: 37-53, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33684433

RESUMEN

In recent years, the development of 3D organoids has opened new avenues of investigation into development, physiology, and regenerative medicine. Organoid formation and the process of organogenesis share common developmental pathways; thus, our knowledge of developmental biology can help model the complexity of different organs to refine organoids into a more sophisticated platform. The developmental process is strongly dependent on complex networks and communication of cell-cell and cell-matrix interactions among different cell populations and their microenvironment, during embryogenesis. These interactions affect cell behaviors such as proliferation, survival, migration, and differentiation. Co-culture systems within the organoid technology were recently developed and provided the highly physiologically relevant systems. Supportive cells including various types of endothelial and stromal cells provide the proper microenvironment, facilitate organoid assembly, and improve vascularization and maturation of organoids. This review discusses the role of the co-culture systems in organoid generation, with a focus on how knowledge of developmental biology has directed and continues to shape the development of more evolved 3D co-culture system-derived organoids.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas de Cocultivo/métodos , Organoides/crecimiento & desarrollo , Animales , Técnicas de Cultivo de Célula/tendencias , Diferenciación Celular , Técnicas de Cocultivo/tendencias , Biología Evolutiva/tendencias , Humanos , Organogénesis , Organoides/citología , Organoides/metabolismo
19.
Cancer Lett ; 506: 35-44, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33675983

RESUMEN

Hepatitis B Virus (HBV) infection is a leading cause of chronic liver cirrhosis and hepatocellular carcinoma (HCC) with an estimated 400 million people infected worldwide. The precise molecular mechanisms underlying HBV replication and tumorigenesis have remained largely uncharacterized due to the lack of a primary cell model to study HBV, a virus that exhibits stringent host species and cell-type specificity. Organoid technology has recently emerged as a powerful tool to investigate human diseases in a primary 3D cell-culture system that maintains the organisation and functionality of the tissue of origin. In this review, we describe the utilisation of human liver organoid platforms to study HBV. We first present the different categories of liver organoids and their demonstrated ability to support the complete HBV replication cycle. We then discuss the potential applications of liver organoids in investigating HBV infection and replication, related tumorigenesis and novel HBV-directed therapies. Liver organoids can be genetically modified, patient-derived, expanded and biobanked, thereby serving as a clinically-relevant, human, primary cell-derived platform to investigate HBV. Finally, we provide insights into the future applications of this powerful technology in the context of HBV-infection and HCC.


Asunto(s)
Hepatitis B/complicaciones , Neoplasias Hepáticas/etiología , Hígado/citología , Organoides/virología , Replicación Viral/fisiología , Carcinogénesis , Virus de la Hepatitis B/fisiología , Humanos , Hígado/virología
20.
Viruses ; 12(9)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887284

RESUMEN

Substantial efforts to eliminate or reduce latent HIV-1 reservoirs are underway in clinical trials and have created a critical demand for sensitive, accurate, and reproducible tools to evaluate the efficacy of these strategies. Alternative reservoir quantification assays have been developed to circumvent limitations of the quantitative viral outgrowth assay. One such assay is tat/rev induced limiting dilution assay (TILDA), which measures the frequency of CD4+ T cells harboring inducible latent HIV-1 provirus. We modified pre-amplification reagents and conditions (TILDA v2.0) to improve assay execution and first internally validated assay performance using CD4+ T cells obtained from cART-suppressed HIV-1-infected individuals. Detection of tat/rev multiply spliced RNA was not altered by modifying pre-amplification conditions, confirming the robustness of the assay, and supporting the technique's amenability to limited modifications to ensure better implementation for routine use in clinical studies of latent HIV-1 reservoirs. Furthermore, we cross-validated results of TILDA v2.0 and the original assay performed in two separate laboratories using samples from 15 HIV-1-infected individuals. TILDA and TILDA v2.0 showed a strong correlation (Lin's Concordance Correlation Coefficient = 0.86). The low inter-laboratory variability between TILDAs performed at different institutes further supports use of TILDA for reservoir quantitation in multi-center interventional HIV-1 Cure trials.


Asunto(s)
Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Virología/métodos , Adulto , Linfocitos T CD4-Positivos/virología , Femenino , Infecciones por VIH/diagnóstico , VIH-1/genética , VIH-1/fisiología , Humanos , Laboratorios , Masculino , Persona de Mediana Edad , Provirus/genética , Provirus/aislamiento & purificación , Provirus/fisiología , Reproducibilidad de los Resultados , Latencia del Virus , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...