RESUMEN
The COVID-19 pandemic has affected cities particularly hard. Here, we provide an in-depth characterization of disease incidence and mortality and their dependence on demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. Our analyses show a strong association between socioeconomic status and both COVID-19 outcomes and public health capacity. People living in municipalities with low socioeconomic status did not reduce their mobility during lockdowns as much as those in more affluent municipalities. Testing volumes may have been insufficient early in the pandemic in those places, and both test positivity rates and testing delays were much higher. We find a strong association between socioeconomic status and mortality, measured by either COVID-19-attributed deaths or excess deaths. Finally, we show that infection fatality rates in young people are higher in low-income municipalities. Together, these results highlight the critical consequences of socioeconomic inequalities on health outcomes.
Asunto(s)
COVID-19/epidemiología , COVID-19/mortalidad , Clase Social , Factores Socioeconómicos , Adulto , Factores de Edad , Anciano , COVID-19/diagnóstico , COVID-19/transmisión , Prueba de Ácido Nucleico para COVID-19 , Chile/epidemiología , Ciudades/epidemiología , Humanos , Incidencia , Persona de Mediana Edad , Mortalidad , Distanciamiento Físico , Pobreza , Salud UrbanaRESUMEN
The current coronavirus disease 2019 (COVID-19) pandemic has impacted dense urban populations particularly hard. Here, we provide an in-depth characterization of disease incidence and mortality patterns, and their dependence on demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. We find that among all age groups, there is a strong association between socioeconomic status and both mortality -measured either by direct COVID-19 attributed deaths or excess deaths- and public health capacity. Specifically, we show that behavioral factors like human mobility, as well as health system factors such as testing volumes, testing delays, and test positivity rates are associated with disease outcomes. These robust patterns suggest multiple possibly interacting pathways that can explain the observed disease burden and mortality differentials: (i) in lower socioeconomic status municipalities, human mobility was not reduced as much as in more affluent municipalities; (ii) testing volumes in these locations were insufficient early in the pandemic and public health interventions were applied too late to be effective; (iii) test positivity and testing delays were much higher in less affluent municipalities, indicating an impaired capacity of the health-care system to contain the spread of the epidemic; and (iv) infection fatality rates appear much higher in the lower end of the socioeconomic spectrum. Together, these findings highlight the exacerbated consequences of health-care inequalities in a large city of the developing world, and provide practical methodological approaches useful for characterizing COVID-19 burden and mortality in other segregated urban centers.
RESUMEN
A key question for infectious disease dynamics is the impact of the climate on future burden. Here, we evaluate the climate drivers of respiratory syncytial virus (RSV), an important determinant of disease in young children. We combine a dataset of county-level observations from the US with state-level observations from Mexico, spanning much of the global range of climatological conditions. Using a combination of nonlinear epidemic models with statistical techniques, we find consistent patterns of climate drivers at a continental scale explaining latitudinal differences in the dynamics and timing of local epidemics. Strikingly, estimated effects of precipitation and humidity on transmission mirror prior results for influenza. We couple our model with projections for future climate, to show that temperature-driven increases to humidity may lead to a northward shift in the dynamic patterns observed and that the likelihood of severe outbreaks of RSV hinges on projections for extreme rainfall.