Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 176: 113869, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163693

RESUMEN

Pulsed electric field (PEF) technology has found applications in various industrial food sectors, including the potato industry, winemaking, biorefinery, and juice extraction, among others. The practical implementation of PEF technology in the food industry is however still hindered by several challenges. The detection and quantification of PEF effects are complex due to the variable characteristics and properties of raw materials, including cellular composition, structural organization, textural properties, and tissue porosity. Moreover, the PEF treatment parameters (e.g., pulse amplitude, duration, shape, rate), and process parameters (e.g., temperature, pH, medium conductivity) further complicate the optimization of PEF protocols, requiring a case-by-case approach. Knowledge of treated material properties and their functional dependence on PEF is a crucial prerequisite to informed, intelligent design of treatment protocols. We present an experimental study designed to gain insights into the mechanism behind the changes in textural properties induced by PEF in both plant and animal tissues. These changes in texture are then compared with findings from our previous study on electrical impedance, to highlight how different methods of detection of PEF-induced changes in tissue can yield vastly different results based on the method of analysis used depending on tissue properties. Furthermore, texture analysis unveiled the less-explored effects of PEF treatment on electroosmosis phenomena in both plant and animal tissues. We provide a comparative analysis between plant and animal tissues to elucidate the differences in deformation resulting from PEF treatment. We thus demonstrate how important it is, be it in the development phase or for process control during industrial operation, to choose an appropriate method of characterising PEF-induced changes in tissue to avoid under- or overtreatment.


Asunto(s)
Electricidad , Manipulación de Alimentos , Animales , Conductividad Eléctrica , Manipulación de Alimentos/métodos , Temperatura , Alimentos
3.
IEEE Trans Biomed Eng ; 70(6): 1826-1837, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022450

RESUMEN

OBJECTIVE: The goal of our study was to determine the importance of electric field orientation in an anisotropic muscle tissue for the extent of irreversible electroporation damage by means of an experimentally validated mathematical model. METHODS: Electrical pulses were delivered to porcine skeletal muscle in vivo by inserting needle electrodes so that the electric field was applied in direction either parallel or perpendicular to the direction of the muscle fibres. Triphenyl tetrazolium chloride staining was used to determine the shape of the lesions. Next, we used a single cell model to determine the cell-level conductivity during electroporation, and then generalised the calculated conductivity changes to the bulk tissue. Finally, we compared the experimental lesions with the calculated field strength distributions using the Sørensen-Dice similarity coefficient to find the contours of the electric field strength threshold beyond which irreversible damage is thought to occur. RESULTS: Lesions in the parallel group were consistently smaller and narrower than lesions in the perpendicular group. The determined irreversible threshold of electroporation for the selected pulse protocol was 193.4 V/cm with a standard deviation of 42.1 V/cm, and was not dependent on field orientation. CONCLUSION: Muscle anisotropy is of significant importance when considering electric field distribution in electroporation applications. SIGNIFICANCE: The paper presents an important advancement in building up from the current understanding of single cell electroporation to an in silico multiscale model of bulk muscle tissue. The model accounts for anisotropic electrical conductivity and has been validated through experiments in vivo.


Asunto(s)
Electroporación , Músculo Esquelético , Animales , Porcinos , Electroporación/métodos , Terapia de Electroporación , Electricidad , Simulación por Computador , Conductividad Eléctrica
4.
Biomed Eng Online ; 15: 36, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27056369

RESUMEN

BACKGROUND: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. METHODS: The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011-2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. RESULTS: The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. CONCLUSIONS: The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments.


Asunto(s)
Educación a Distancia/métodos , Electroquimioterapia , Fenómenos Electrofisiológicos , Ingeniería/educación , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Conformación Molecular , Simulación de Dinámica Molecular , Ciencia/educación , Programas Informáticos , Estudiantes
5.
J Membr Biol ; 247(12): 1279-304, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25287023

RESUMEN

Electroporation is a method of treatment of plant tissue that due to its nonthermal nature enables preservation of the natural quality, colour and vitamin composition of food products. The range of processes where electroporation was shown to preserve quality, increase extract yield or optimize energy input into the process is overwhelming, though not exhausted; e.g. extraction of valuable compounds and juices, dehydration, cryopreservation, etc. Electroporation is--due to its antimicrobial action--a subject of research as one stage of the pasteurization or sterilization process, as well as a method of plant metabolism stimulation. This paper provides an overview of electroporation as applied to plant materials and electroporation applications in food processing, a quick summary of the basic technical aspects on the topic, and a brief discussion on perspectives for future research and development in the field. The paper is a review in the very broadest sense of the word, written with the purpose of orienting the interested newcomer to the field of electroporation applications in food technology towards the pertinent, highly relevant and more in-depth literature from the respective subdomains of electroporation research.


Asunto(s)
Electroporación/métodos , Manipulación de Alimentos/métodos , Criopreservación/métodos , Conservación de Alimentos/métodos
6.
Biochim Biophys Acta ; 1838(7): 1950-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24657231

RESUMEN

In many electroporation applications mass transport in biological tissue is of primary concern. This paper presents a theoretical advancement in the field and gives some examples of model use in electroporation applications. The study focuses on post-treatment solute diffusion. We use a dual-porosity approach to describe solute diffusion in electroporated biological tissue. The cellular membrane presents a hindrance to solute transport into the extracellular space and is modeled as electroporation-dependent porosity, assigned to the intracellular space (the finite rate of mass transfer within an individual cell is not accounted for, for reasons that we elaborate on). The second porosity is that of the extracellular space, through which solute vacates a block of tissue. The model can be used to study extraction out of or introduction of solutes into tissue, and we give three examples of application, a full account of model construction, validation with experiments, and a parametrical analysis. To facilitate easy implementation and experimentation by the reader, the complete derivation of the analytical solution for a simplified example is presented. Validation is done by comparing model results to experimentally-obtained data; we modeled kinetics of sucrose extraction by diffusion from sugar beet tissue in laboratory-scale experiments. The parametrical analysis demonstrates the importance of selected physicochemical and geometrical properties of the system, illustrating possible outcomes of applying the model to different electroporation applications. The proposed model is a new platform that supports rapid extension by state-of-the-art models of electroporation phenomena, developed as latest achievements in the field of electroporation.


Asunto(s)
Electroporación/métodos , Modelos Biológicos , Beta vulgaris/química , Beta vulgaris/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Simulación por Computador , Difusión , Cinética , Porosidad , Soluciones , Sacarosa/química , Sacarosa/metabolismo
7.
BMC Med Educ ; 12: 102, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23107609

RESUMEN

BACKGROUND: Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters. In the treatment planning stage, if oversimplified approximations for evaluation of electric field are used, such as U/d (voltage-to-distance ratio), sufficient field strength may not be reached within the entire target (tumor) area, potentially resulting in treatment failure. RESULTS: In order to provide an aid in education of medical personnel performing electrochemotherapy and non-thermal irreversible electroporation for tissue ablation, assist in visualizing the electric field in needle electrode electroporation and the effects of changes in electrode placement, an application has been developed both as a desktop- and a web-based solution. It enables users to position up to twelve electrodes in a plane of adjustable dimensions representing a two-dimensional slice of tissue. By means of manipulation of electrode placement, i.e. repositioning, and the changes in electrical parameters, the users interact with the system and observe the resulting electrical field strength established by the inserted electrodes in real time. The field strength is calculated and visualized online and instantaneously reflects the desired changes, dramatically improving the user friendliness and educational value, especially compared to approaches utilizing general-purpose numerical modeling software, such as finite element modeling packages. CONCLUSION: In this paper we outline the need and offer a solution in medical education in the field of electroporation-based treatments, e.g. primarily electrochemotherapy and non-thermal irreversible tissue ablation. We present the background, the means of implementation and the fully functional application, which is the first of its kind. While the initial feedback from students that have evaluated this application as part of an e-learning course is positive, a formal study is planned to thoroughly evaluate the current version and identify possible future improvements and modifications.


Asunto(s)
Quimioterapia Asistida por Computador/instrumentación , Quimioterapia Asistida por Computador/métodos , Educación Médica , Electroquimioterapia/instrumentación , Electroquimioterapia/métodos , Electrodos , Campos Electromagnéticos , Electroporación/instrumentación , Electroporación/métodos , Neoplasias Cutáneas/tratamiento farmacológico , Programas Informáticos , Curriculum , Presentación de Datos , Conductividad Eléctrica , Diseño de Equipo , Humanos , Matemática , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...