Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatocell Carcinoma ; 10: 783-793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260529

RESUMEN

Purpose: Hepatocellular carcinoma (HCC), a prevalent type of liver cancer, is mainly diagnosed in the advanced stage, leading to a high mortality rate. Recent advances have identified peripheral cytokines as a potential tool to predict disease outcomes and inform therapeutic decisions. Hence, in this study, we aim to build a predictive model for HCC based on serum levels of different cytokines. Patients and Methods: We used immunoassay to quantify the concentrations of IL-27, MIP-1ß, Perforin, sCD137, sFas, and TNF-α in the serum of 38 HCC patients and 15 healthy controls. Logistic regression was then used to construct classification models detecting HCC based on these cytokines. A nomogram of the best-performing model was generated to visualize HCC prediction. Results: sFas and MIP-1ß were found to be significantly higher in HCC patients compared to controls. Predictive models based on cytokine levels combining sFas, sCD137, and IL-27 performed the best in distinguishing HCC patients from healthy controls. This model has a bias-corrected area under the receiver operating characteristic (ROC) curve (AUC) of 0.948, a sensitivity of 92.11%, a specificity of 93.33%, and an accuracy of 0.925. Conclusion: Our findings suggest that serum cytokines have the potential to be utilized in HCC screening to improve detection rates.

2.
J Nanosci Nanotechnol ; 15(1): 445-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328378

RESUMEN

A new strategy has been developed for covalent incorporation of SiO2 nanoparticles (N-'s) in the CO2-based copolymer, poly(propylene carbonate-co-propylene oxide) (poly(PC-co-PO)). The poly(PC-co-PO)-g-SiO2 nanocomposites was prepared by the combination of epoxy-CO2 ring-opening polymerization and the condensation reaction of chloride and hydroxyl groups of the polymer and the SiO2 surface. FT-IR and NMR were employed for the characterization of the copolymers as well as nanocomposites. A uniform and spherical core-shell structure of poly(PC-co-PO)-g-SiO2 nanocomposites was demonstrated from TEM and SEM images. An improved thermal property of the polymer matrix with incorporating SiO2 nanoparticles was revealed by TGA study. The grafting of poly(PC-co-PO) considerably prevented the aggregation and improved the dispersibility of SiO2 nanoparticles in toluene.

3.
J Nanosci Nanotechnol ; 14(11): 8813-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25958609

RESUMEN

The covalent attachment of poly(2-hydroxyethyl methacrylate) on ZnO nanoparticles (NPs) has been achieved by ARGET ATRP. The polymer chains were grown from the surface of ATRP-initiator modified ZnO NPs with a copper (II) catalyst under activation of zerovalent copper as a reducing agent. FT-IR, FE-SEM, TEM and TGA were employed for the characterization of the nanocomposites. GPC was used to determine the molecular weight and PDI of the cleaved polymer. The covalent attachment of polymer chains onto the surface of ZnO NPs was sufficiently confirmed by FT-IR. In addition, the formation of the polymer encapsulating ZnO cores was demonstrated from TEM and SEM images. It was found that the growing of polymer brushes from the ZnO surface could be induced even though the catalyst amount was reduced to 10 ppm without loss of inherent control manner. This report contributed to demonstrate the versatility and feasibility of ATRP-based surface-initiated polymerization for the preparation of inorganic/polymer nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA