Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Res Rev ; 43(5): 1504-1536, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37052237

RESUMEN

Ganoderma lucidum is a mushroom that has been widely used for centuries in Asian countries for its antiaging properties. It is popularly known as "Ling Zhi," "Reishi," and "Youngzhi," and because of its benefits, it is known as the "immortality mushroom." Pharmacological assays have revealed that G. lucidum ameliorates cognitive impairments through inhibition of ß-amyloid and neurofibrillary tangle formation, antioxidant effect, reduction of inflammatory cytokine release and apoptosis, genic expression modulation, among other activities. Chemical investigations on G. lucidum have revealed the presence of metabolites such as triterpenes, which are the most explored in this field, as well as flavonoids, steroids, benzofurans, and alkaloids; in the literature, these have also been reported to have mnemonic activity. These properties of the mushroom make it a potential source of new drugs to prevent or reverse memory disorders, as actual medications are able to only alleviate some symptoms but are unable to stop the progress of cognitive impairments, with no impact on social, familiar, and personal relevance. In this review, we discuss the cognitive findings of G. lucidum reported in the literature, converging the proposed mechanisms through the several pathways that underlie memory and cognition processes. In addition, we highlight the gaps that deserve particular attention to support future studies.


Asunto(s)
Reishi , Triterpenos , Humanos , Reishi/química , Reishi/genética , Antagonistas Colinérgicos , Antioxidantes/química , Cognición , Triterpenos/química , Triterpenos/farmacología
2.
Ann Transl Med ; 10(2): 113, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35282119

RESUMEN

This case report describes the long-term behavioral and cognitive alterations in a critically ill pediatric patient submitted to a ketamine sedation and analgesia protocol for 7 consecutive days in a pediatric intensive care unit. The infant exhibited withdrawal syndrome in the early withdrawal period, as measured using the Withdrawal Assessment Tool-1 (WAT-1). In the days following ketamine withdrawal, behavioral, motor, and cognitive impairment was observed, even after hospital discharge. At 20 days after admission to hospital, the infant still displayed language deficits compatible with the at-risk category for the appropriate age group on the development assessment (Denver-II Developmental Screening Test). The infant's mother reported that these impairments were not present before ketamine sedation. We therefore suggest that prolonged ketamine use may have contributed to the long-lasting behavioral and cognitive impairments observed in the critically ill infant. These adverse effects may be attributable to ketamine's pharmacological mechanism of action, by which the N-methyl-D-aspartate receptor-the central nervous system excitatory receptor responsible for memory and learning domains-is blockaded, disrupting long-term potentiation events. Our case highlights the need for clinical evaluation of ketamine agents and their associated risks in intensive care units to better clarify appropriate sedative and analgesic agents during neurodevelopmental periods of life.

3.
Pharmaceutics ; 14(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35056925

RESUMEN

Psychoactive substances during pregnancy and lactation is a key problem in contemporary society, causing social, economic, and health disturbance. In 2010, about 30 million people used opioid analgesics for non-therapeutic purposes, and the prevalence of opioids use during pregnancy ranged from 1% to 21%, representing a public health problem. This study aimed to evaluate the long-lasting neurobehavioral and nociceptive consequences in adult offspring rats and mice exposed to morphine during intrauterine/lactation periods. Pregnant rats and mice were exposed subcutaneously to morphine (10 mg/kg/day) during 42 consecutive days (from the first day of pregnancy until the last day of lactation). Offspring were weighed on post-natal days (PND) 1, 5, 10, 15, 20, 30, and 60, and behavioral tasks (experiment 1) or nociceptive responses (experiment 2) were assessed at 75 days of age (adult life). Morphine-exposed female rats displayed increased spontaneous locomotor activity. More importantly, both males and female rats perinatally exposed to morphine displayed anxiety- and depressive-like behaviors. Morphine-exposed mice presented alterations in the nociceptive responses on the writhing test. This study showed that sex difference plays a role in pain threshold and that deleterious effects of morphine during pre/perinatal periods are nonrepairable in adulthood, which highlights the long-lasting clinical consequences related to anxiety, depression, and nociceptive disorders in adulthood followed by intrauterine and lactation morphine exposure.

4.
Med Res Rev ; 41(2): 1195-1215, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33174618

RESUMEN

Propolis consists of a honeybee product, with a complex mix of substances that have been widely used in traditional medicine. Among several compounds present in propolis, caffeic acid phenethyl ester (CAPE), and pinocembrin emerge as two principal bioactive compounds, with benefits in a variety of body systems. In addition to its well-explored pharmacological properties, neuropharmacological activities have been poorly discussed. In an unprecedented way, the present review addresses the current finding on the promising therapeutic purposes of propolis, focusing on CAPE and pinocembrin, highlighting its use on neurological disturbance, as cerebral ischemia, neuroinflammation, convulsion, and cognitive impairment, as well as psychiatric disorders, such as anxiety and depression. In addition, we provide a critical analysis, discussion, and systematization of the molecular mechanisms which underlie these central nervous system effects. We hypothesize that the pleiotropic action of CAPE and pinocembrin, per se or associated with other substances present in propolis may result in the therapeutic activities reported. Inhibition of the pro-inflammatory cascade, antioxidant activity, and positive neurotrophic modulatory effects consist of the main molecular targets attributed to CAPE and pinocembrin in health benefits.


Asunto(s)
Enfermedades del Sistema Nervioso , Própolis , Animales , Abejas , Ácidos Cafeicos/farmacología , Flavanonas , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Alcohol Feniletílico/análogos & derivados
5.
Environ Int ; 146: 106223, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120229

RESUMEN

Mercury is among the ten most dangerous chemicals for public health, and is a priority concern for the 128 signatory countries of the Minamata Convention. Mercury emissions to the atmosphere increased 20% between 2010 and 2015, with South America, Sub-Saharan Africa and Southeast Asia as the main contributors. Approximately 80% of the total mercury emissions in South America is from the Amazon, where the presence of the metal is ubiquitous and highly dynamic. The presence of this metal is likely increasing, with global consequences, due to events of the last two years including extensive biomass burning and deforestation, as well as mining activities and the construction of large-scale projects, such as dams. Here we present a concise profile of this mobilization, highlighting the human exposure to this metal in areas without mining history. Mercury reaches the food chain in its most toxic form, methylmercury, intoxicating human populations through the intake of contaminated fish. Amazonian populations present levels over 6 ppm of hair mercury and, according to the 175:250:5:1 ratio for methylmercury intake : mercury hair : mercury brain : mercury blood, consume 2-6 times the internationally recognized reference doses. This exposure is alarmingly higher than that of other populations worldwide. A possible biphasic behavior of the mercury-related phenomena, with consequences that may not be observed in populations with lower levels, is hypothesized, supporting the need of improving our knowledge of this type of chronic exposure. It is urgent that we address this serious public health problem in the Amazon, especially considering that human exposure may be increasing in the near future. All actions in this region carry the potential to have global repercussions.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , Exposición a Riesgos Ambientales/análisis , Cabello/química , Humanos , Mercurio/análisis , Minería , América del Sur
6.
Int J Dent ; 2020: 8873462, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33273924

RESUMEN

Postmenopausal estrogen deficiency and ethanol (EtOH) abuse are known risk factors for different diseases including bone tissues. However, little is known about the synergic effects of EtOH abuse and estrogen deficiency on alveolar bone loss in women. The present study evaluated the effects of EtOH chronic exposure and ovariectomy on the alveolar bone loss in female rats. For this, 40 female Wistar rats were randomly divided into 4 groups: control, EtOH exposure, ovariectomy (OVX), and OVX plus EtOH exposure. Initially, half of the animals were ovariectomized at 75 days of age. After that, the groups received distilled water or EtOH 6.5 g/kg/day (20% w/v) for 55 days via gavage. Thereafter, animals were sacrificed and the mandibles were collected, dissected, and separated into hemimandibles. Alveolar bone loss was evaluated by measuring the distance between the cementoenamel junction and the alveolar bone crest through a stereomicroscope in 3 different anatomical regions of the tissue. One-way ANOVA and post hoc Tukey were used to compare groups (p < 0.05). The results showed that the ovariectomy and EtOH exposure per se were able to induce alveolar bone loss, and their association did intensify significantly the effect. Therefore, OVX associated with heavy EtOH exposure increase the spontaneous alveolar bone loss in rats.

7.
Int J Mol Sci ; 21(10)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443589

RESUMEN

Lead (Pb) is an environmental contaminant that presents a high risk for human health. We aimed to investigate the possible alterations triggered by the exposure to Pb acetate for a long period in motor performance and the possible relationship with biochemical, proteomic and morphological alterations in the cerebellum of rats. Male Wistar rats were exposed for 55 days, at 50 mg/Kg of Pb acetate, and the control animals received distilled water. Open field (OF) and rotarod tests; biochemistry parameters (MDA and nitrite); staining/immunostaining of Purkinje cells (PC), mature neurons (MN), myelin sheath (MS) and synaptic vesicles (SYN) and proteomic profile were analyzed. Pb deposition on the cerebellum area and this study drove to exploratory and locomotion deficits and a decrease in the number of PC, MN, SYN and MS staining/immunostaining. The levels of MDA and nitrite remained unchanged. The proteomic profile showed alterations in proteins responsible for neurotransmitters release, as well as receptor function and second messengers signaling, and also proteins involved in the process of apoptosis. Thus, we conclude that the long-term exposure to low Pb dose promoted locomotion and histological tracings, associated with alterations in the process of cell signaling, as well as death by apoptosis.


Asunto(s)
Cerebelo/metabolismo , Plomo/toxicidad , Locomoción , Proteoma , Células de Purkinje/patología , Animales , Apoptosis , Cerebelo/patología , Cerebelo/fisiopatología , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Wistar , Vesículas Sinápticas
8.
Oxid Med Cell Longev ; 2019: 2415243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354903

RESUMEN

The heavy and episodic EtOH drinking pattern, equivalent to weekend consumption, characterizes the binge-drinking pattern and promotes a misbalance of encephalic metabolic functions, concurring to neurodegeneration and cerebral dysfunction. And for being a legal drug, it has global public health and social relevance. In this way, we aimed to investigate the effects of physical training, in a treadmill, on the deleterious effects of EtOH on hippocampal functions, related to memory and learning. For this, we used 40 Wistar rats, divided into four groups: Control group, Trained group (trained animals with doses of distilled water), EtOH group (nontrained animals with doses of 3 g/kg/day of EtOH, 20% w/v), and Trained+EtOH group (trained animals exposed to EtOH). The physical exercise was performed by running on a treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in binge. After the experimental period, the animals were submitted to the object recognition task and Morris water maze test, and after being euthanized, the blood and hippocampus were collected for Trolox Equivalent Antioxidant Capacity (TEAC), Reduced Glutathione Content (GSH), and Nitrite and Lipid Peroxidation (LPO) level measurements. Our results showed that EtOH caused marked oxidative stress and mnemonic damage, and the physical exercise promoted neuroprotective effects, among them, the modulation of oxidative biochemistry in plasma (by restoring GSH levels) and in the hippocampus (by reducing LPO levels and increasing antioxidant parameters) and cognitive function improvement. Therefore, physical exercise can be an important prophylactic and therapeutic tool in order to ameliorate and even prevent the deleterious effects of EtOH on cognitive functions.


Asunto(s)
Intoxicación Alcohólica/terapia , Etanol/efectos adversos , Hipocampo/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Animales , Masculino , Oxidación-Reducción , Ratas , Ratas Wistar
9.
Oxid Med Cell Longev ; 2019: 6802424, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30911348

RESUMEN

Ethanol (EtOH) binge drinking is characterized by high EtOH intake during few hours followed by withdrawal. Protection strategies against the damages generated by this binge are poorly explored. Thus, this study is aimed at investigating the protective role of treadmill physical exercise (PE) on the damage caused after repeated cycles of binge-like EtOH exposure in the oxidative biochemistry, morphology, and cerebellar function of rats from adolescence to adulthood. For this, animals were divided into four groups: control group (sedentary animals with doses of distilled water), exercised group (exercised animals with doses of distilled water), EtOH group (sedentary animals with doses of 3 g/kg/day of EtOH, 20% w/v), and exercised+EtOH group (exercised animals with previous mentioned doses of EtOH). The PE occurred on a running treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in a binge-like manner. After the EtOH protocol and PE, animals were submitted to open field and beam walking tests. In sequence, the cerebellums were collected for the biochemical and morphological analyses. Biochemical changes were analyzed by measurement of Trolox equivalent antioxidant capacity (TEAC), reduced glutathione content measurements (GSH), and measurement of nitrite and lipid peroxidation (LPO). In morphological analyses, Purkinje cell density evaluation and immunohistochemistry evaluation were measured by antimyelin basic protein (MBP) and antisynaptophysin (SYP). The present findings demonstrate that the binge drinking protocol induced oxidative biochemistry misbalance, from the decrease of TEAC levels and higher LPO related to tissue damage and motor impairment. In addition, we have shown for the first time that treadmill physical exercise reduced tissue and functional alterations displayed by EtOH exposure.


Asunto(s)
Envejecimiento/patología , Consumo Excesivo de Bebidas Alcohólicas/patología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Cerebelo/patología , Cerebelo/fisiopatología , Etanol/efectos adversos , Estrés Oxidativo , Condicionamiento Físico Animal , Animales , Masculino , Actividad Motora , Proteína Básica de Mielina/metabolismo , Ratas Wistar , Sinaptofisina/metabolismo , Aumento de Peso
10.
Front Mol Neurosci ; 11: 125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867340

RESUMEN

Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

11.
Front Behav Neurosci ; 12: 88, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867389

RESUMEN

Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures' morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

12.
Behav Brain Res ; 350: 99-108, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29752970

RESUMEN

Binge-like ethanol intake (BEI) is a socioeconomical problem among adolescents and increasingly affects women. BEI can leave a long-term imprint in the brain, but it is unknown if its effect on cognition and anxiety is cumulative on repeated binge-ethanol episodes. We now submitted female Wistar rats to repeated cycles of binge-like ethanol treatment by intragastrically administering ethanol (3.0 g/kg/day, 20% w/v ethanol; 3 days on/4 days off) starting at postnatal day 35 (PND35). To investigate the short-term effects of BEI during adolescence, rats underwent 1 or 4 cycles of BEI, being evaluated at PND37 and PND58, respectively: both groups displayed anxiety-like behavior in the open field and elevated plus-maze tests, as well as short-term memory deficits in the object recognition task; this was associated with transient decreases of BDNF levels and increases of GFAP levels in the hippocampus. To evaluate the short- and long-lasting effects of BEI in adulthood, rats were subjected to 8 cycles of BEI and evaluated after 7.5 h (PND86) or after 14 days of ethanol withdrawal (PND100). This caused a persistent anxiogenic profile whereas recognition memory was impaired on the short-term, but not 14 days post-administration. The reduced BDNF level observed shortly after BEI recovered upon withdrawal, whereas increased GFAP immunoreactivity was persistent up to 14 days post-administration in adulthood. These findings show that repeated binge-like ethanol episodes from adolescence to adulthood in female rats cause consistent and long-term alterations of anxiety and hippocampal astrogliosis, whereas they trigger a recognition memory deficit paralleled by lower hippocampal BDNF levels, both recovering upon ethanol withdrawal.


Asunto(s)
Ansiedad/etiología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/psicología , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/etiología , Animales , Ansiedad/fisiopatología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Trastornos de la Memoria/fisiopatología , Ratas Wistar , Maduración Sexual , Factores de Tiempo
13.
Front Aging Neurosci ; 9: 327, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085294

RESUMEN

Periodontitis is an oral chronic infection/inflammatory condition, identified as a source of mediators of inflammation into the blood circulation, which may contribute to exacerbate several diseases. There is increasing evidence that inflammation plays a key role in the pathophysiology of Alzheimer's disease (AD). Although inflammation is present in both diseases, the exact mechanisms and crosslinks between periodontitis and AD are poorly understood. Therefore, this article aims to review possible comorbidity between periodontitis and AD. Here, the authors discuss the inflammatory aspects of periodontitis, how this oral condition produces a systemic inflammation and, finally, the contribution of this systemic inflammation for worsening neuroinflammation in the progression of AD.

15.
PLoS One ; 11(9): e0162822, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27622704

RESUMEN

Human exposure to relatively low levels of methylmercury is worrying, especially in terms of its genotoxicity. It is currently unknown as to whether exposure to low levels of mercury (below established limits) is safe. Genotoxicity was already shown in lymphocytes, but studies with cells of the CNS (as the main target organ) are scarce. Moreover, disturbances in the cell cycle and cellular proliferation have previously been observed in neuronal cells, but no data are presently available for glial cells. Interestingly, cells of glial origin accumulate higher concentrations of methylmercury than those of neuronal origin. Thus, the aim of this work was to analyze the possible genotoxicity and alterations in the cell cycle and cell proliferation of a glioma cell line (C6) exposed to a low, non-lethal and non-apoptotic methylmercury concentration. Biochemical (mitochondrial activity) and morphological (integrity of the membrane) assessments confirmed the absence of cell death after exposure to 3 µM methylmercury for 24 hours. Even without promoting cell death, this treatment significantly increased genotoxicity markers (DNA fragmentation, micronuclei, nucleoplasmic bridges and nuclear buds). Changes in the cell cycle profile (increased mitotic index and cell populations in the S and G2/M phases) were observed, suggesting arrest of the cycle. This delay in the cycle was followed, 24 hours after methylmercury withdrawal, by a decrease number of viable cells, reduced cellular confluence and increased doubling time of the culture. Our work demonstrates that exposure to a low sublethal concentration of MeHg considered relatively safe according to current limits promotes genotoxicity and disturbances in the proliferation of cells of glial origin with sustained consequences after methylmercury withdrawal. This fact becomes especially important, since this cellular type accumulates more methylmercury than neurons and displays a vital role protecting the CNS, especially in chronic intoxication with this heavy metal.


Asunto(s)
Compuestos de Metilmercurio/toxicidad , Mutágenos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Humanos , Compuestos de Metilmercurio/administración & dosificación , Pruebas de Mutagenicidad , Mutágenos/administración & dosificación , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Ratas
16.
Int J Environ Res Public Health ; 11(9): 9171-85, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25198682

RESUMEN

The aims of this study were to evaluate whether chronic intoxication with mercury chloride (HgCl2), in a low concentration over a long time, can be deposited in the central nervous tissue and to determine if this exposure induces motor and cognitive impairments. Twenty animals were intoxicated for 45 days at a dose of 0.375 mg/kg/day. After this period, the animals underwent a battery of behavioral tests, in a sequence of open field, social recognition, elevated T maze and rotarod tests. They were then sacrificed, their brains collected and the motor cortex and hippocampus dissected for quantification of mercury deposited. This study demonstrates that long-term chronic HgCl2 intoxication in rats promotes functional damage. Exposure to HgCl2 induced anxiety-related responses, short- and long-term memory impairments and motor deficits. Additionally, HgCl2 accumulated in both the hippocampus and cortex of the brain with a higher affinity for the cortex.


Asunto(s)
Contaminantes Ambientales/toxicidad , Memoria/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Intoxicación del Sistema Nervioso por Mercurio/fisiopatología , Actividad Motora/efectos de los fármacos , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Intoxicación del Sistema Nervioso por Mercurio/etiología , Ratas , Ratas Wistar
17.
Phytomedicine ; 21(11): 1466-72, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25012909

RESUMEN

PURPOSE: Propolis biological effects are mainly attributed to its polyphenolic constituents such as flavonoids and phenolic acids that were recently described in the chemical composition of an extract of propolis obtained with edible vegetal oil (OEP) by our group. The aim of this study was to evaluate the effect of OEP on the behavior of rats. MATERIALS AND METHODS: An in vivo open field (OF), elevated Plus-maze (EPM), and forced swimming (FS) tests were performed to evaluate locomotor activity, anxiolytic- and antidepressant effects of the extract. Besides, oxidative stress levels were measured in rat blood samples after the behavioral assays by evaluation of the Trolox equivalent antioxidant capacity (TEAC) and nitric oxide levels. RESULTS: OEP increased locomotion in the OF test (50mg/kg) and central locomotion and open arm entries in the OF and EPM tests (10-50mg/kg) and decreased the immobility time in the FS test (10-50mg/kg). Moreover, OEP reduced nitric oxide levels in response to swim stress induced in rats. CONCLUSION: OEP exerted stimulant, anxiolytic and antidepressant effects on the Central Nervous System and antioxidant activity in rats, highlighting propolis as a potential therapeutic compound for behavior impairment of anxiety and depression.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Própolis/farmacología , Animales , Ansiedad/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Femenino , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Óxido Nítrico/sangre , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...