Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 113(9): 1745-1760, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37885045

RESUMEN

The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.


Asunto(s)
Áfidos , Arabidopsis , Luteoviridae , Virus de Plantas , Animales , Enfermedades de las Plantas , Insectos Vectores , Arabidopsis/genética , Luteoviridae/fisiología
2.
Elife ; 122023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278030

RESUMEN

Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds ('metabolic generalism') or alternatively by distinct uses of diet-specific compounds ('multi-host metabolic specialism')? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.


Most insects that feed on green plants are specialists, meaning that they feed on just a narrow range of plant species. This reduces competition, especially if the host plant contains chemical deterrents that are toxic to other insects. But specialists cannot easily switch to feed on other plants, making them vulnerable to changes in the availability of the particular food type that they eat. Generalist insects, on the other hand, are able to consume a wide range of diets. This makes them more robust to changes in food availability, but it is unclear how these insects deal with the wider range of chemical compositions of their food. Do they convert food into energy using the same chemical process, or metabolism, for all the different things they eat? Or do generalists have a specific metabolic pathway for each food type? To answer this question, Olazcuaga, Baltenweck et al. studied the metabolism of a generalist fruit fly species. The team compared four types of fruit (blackcurrant, cherry, cranberry and strawberry) and isolated separate groups of flies so that they each ate only one type of fruit. By comparing the chemical composition of the flies with that of the fruit they ate, they were able to work out how each fruit type was metabolised. They found that the flies converted food into energy using the same process regardless of the type of fruit they ate. This lack of a specialist metabolic pathway for each fruit type meant that some chemicals were not metabolised and accumulated in the fly's body instead. This build-up of unprocessed chemicals is likely to be harmful to the fly. The results of Olazcuaga, Baltenweck et al. suggest that generalist insects do not actively adapt their metabolism to new food types. It's more likely that they try different types of food as the opportunity arises, regardless of the fact that some of the food will not be converted into energy and may harm them long term. These findings are important because they give us an insight into how the chemistry of a plant can shape the physiology of the organisms that consume it, and vice-versa. These insights are a crucial step in developing sustainable agriculture practices that must consider tackle how plants are pollinated, how plant seeds are dispersed and what type of pest control to use.


Asunto(s)
Dieta , Frutas , Animales , Filogenia , Insectos , Plantas
3.
Phytopathology ; 113(8): 1537-1547, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37147741

RESUMEN

Blumeria graminis f. sp. tritici (Bgt) is an obligate biotrophic fungal pathogen responsible for powdery mildew in bread wheat (Triticum aestivum). Upon Bgt infection, the wheat plant activates basal defense mechanisms, namely PAMP-triggered immunity, in the leaves during the first few days. Understanding this early stage of quantitative resistance is crucial for developing new breeding tools and evaluating plant resistance inducers for sustainable agricultural practices. In this sense, we used a combination of transcriptomic and metabolomic approaches to analyze the early steps of the interaction between Bgt and the moderately susceptible wheat cultivar Pakito. Bgt infection resulted in an increasing expression of genes encoding pathogenesis-related (PR) proteins (PR1, PR4, PR5, and PR8) known to target the pathogen, during the first 48 h postinoculation. Moreover, RT-qPCR and metabolomic analyses pointed out the importance of the phenylpropanoid pathway in quantitative resistance against Bgt. Among metabolites linked to this pathway, hydroxycinnamic acid amides containing agmatine and putrescine as amine components accumulated from the second to the fourth day after inoculation. This suggests their involvement in quantitative resistance via cross-linking processes in cell walls for reinforcement, which is supported by the up-regulation of PAL (phenylalanine ammonia-lyase), PR15 (oxalate oxidase) and POX (peroxidase) after inoculation. Finally, pipecolic acid, which is considered a signal involved in systemic acquired resistance, accumulated after inoculation. These new insights lead to a better understanding of basal defense in wheat leaves after Bgt infection.

4.
Front Plant Sci ; 13: 988709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226293

RESUMEN

Fomitiporia mediterranea (Fmed) is one of the main fungal species found in grapevine wood rot, also called "amadou," one of the most typical symptoms of grapevine trunk disease Esca. This fungus is functionally classified as a white-rot, able to degrade all wood structure polymers, i.e., hemicelluloses, cellulose, and the most recalcitrant component, lignin. Specific enzymes are secreted by the fungus to degrade those components, namely carbohydrate active enzymes for hemicelluloses and cellulose, which can be highly specific for given polysaccharide, and peroxidases, which enable white-rot to degrade lignin, with specificities relating to lignin composition as well. Furthermore, besides polymers, a highly diverse set of metabolites often associated with antifungal activities is found in wood, this set differing among the various wood species. Wood decayers possess the ability to detoxify these specific extractives and this ability could reflect the adaptation of these fungi to their specific environment. The aim of this study is to better understand the molecular mechanisms used by Fmed to degrade wood structure, and in particular its potential adaptation to grapevine wood. To do so, Fmed was cultivated on sawdust from different origins: grapevine, beech, and spruce. Carbon mineralization rate, mass loss, wood structure polymers contents, targeted metabolites (extractives) and secreted proteins were measured. We used the well-known white-rot model Trametes versicolor for comparison. Whereas no significant degradation was observed with spruce, a higher mass loss was measured on Fmed grapevine culture compared to beech culture. Moreover, on both substrates, a simultaneous degradation pattern was demonstrated, and proteomic analysis identified a relative overproduction of oxidoreductases involved in lignin and extractive degradation on grapevine cultures, and only few differences in carbohydrate active enzymes. These results could explain at least partially the adaptation of Fmed to grapevine wood structural composition compared to other wood species, and suggest that other biotic and abiotic factors should be considered to fully understand the potential adaptation of Fmed to its ecological niche. Proteomics data are available via ProteomeXchange with identifier PXD036889.

5.
Front Plant Sci ; 13: 878272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720601

RESUMEN

Rhamnolipids (RLs), glycolipids biosynthesized by the Pseudomonas and Burkholderia genera, are known to display various activities against a wide range of pathogens. Most previous studies on RLs focused on their direct antimicrobial activity, while only a few reports described the mechanisms by which RLs induce resistance against phytopathogens and the related fitness cost on plant physiology. Here, we combined transcriptomic and metabolomic approaches to unravel the mechanisms underlying RL-induced resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici, a major pathogen of this crop. Investigations were carried out by treating wheat plants with a bioinspired synthetic mono-RL with a 12-carbon fatty acid tail, dodecanoyl α/ß-L-rhamnopyranoside (Rh-Est-C12), under both infectious and non-infectious conditions to examine its potential wheat defense-eliciting and priming bioactivities. Whereas, Rh-Est-C12 conferred to wheat a significant protection against Z. tritici (41% disease severity reduction), only a slight effect of this RL on wheat leaf gene expression and metabolite accumulation was observed. A subset of 24 differentially expressed genes (DEGs) and 11 differentially accumulated metabolites (DAMs) was scored in elicitation modalities 2, 5, and 15 days post-treatment (dpt), and 25 DEGs and 17 DAMs were recorded in priming modalities 5 and 15 dpt. Most changes were down-regulations, and only a few DEGs and DAMs associated with resistance to pathogens were identified. Nevertheless, a transient early regulation in gene expression was highlighted at 2 dpt (e.g., genes involved in signaling, transcription, translation, cell-wall structure, and function), suggesting a perception of the RL by the plant upon treatment. Further in vitro and in planta bioassays showed that Rh-Est-C12 displays a significant direct antimicrobial activity toward Z. tritici. Taken together, our results suggest that Rh-Est-C12 confers protection to wheat against Z. tritici through direct antifungal activity and, to a lesser extent, by induction of plant defenses without causing major alterations in plant metabolism. This study provides new insights into the modes of action of RLs on the wheat-Z. tritici pathosystem and highlights the potential interest in Rh-Est-C12, a low-fitness cost molecule, to control this pathogen.

6.
Plant Dis ; 106(5): 1408-1418, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34978870

RESUMEN

The present study aimed to evaluate the potential of the laminarin-based formulation Vacciplant to protect and induce resistance in wheat against Zymoseptoria tritici, a major pathogen on this crop. Under greenhouse conditions, a single foliar spraying of the product 2 days before inoculation with Z. tritici reduced disease severity and pycnidium density by 42 and 45%, respectively. Vacciplant exhibited a direct antifungal activity on Z. tritici conidial germination both in vitro and in planta. Moreover, it reduced in planta substomatal colonization as well as pycnidium formation on treated leaves. Molecular investigations revealed that Vacciplant elicits but did not prime the expression of several wheat genes related to defense pathways, including phenylpropanoids (phenylalanine ammonia-lyase and chalcone synthase), octadecanoids (lipoxygenase and allene oxide synthase), and pathogenesis-related proteins (ß-1,3-endoglucanase and chitinase). By contrast, it did not modulate the expression of oxalate oxidase gene involved in the reactive oxygen species metabolism. Ultrahigh-performance liquid chromatography-mass spectrometry analysis indicated limited changes in leaf metabolome after product application in both noninoculated and inoculated conditions, suggesting a low metabolic cost associated with induction of plant resistance. This study provides evidence that the laminarin-based formulation confers protection to wheat against Z. tritici through direct antifungal activity and elicitation of plant defense-associated genes.


Asunto(s)
Antifúngicos , Triticum , Antifúngicos/farmacología , Ascomicetos , Glucanos , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
7.
Front Plant Sci ; 13: 1074447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777540

RESUMEN

Plant immunity induction with natural biocontrol compounds is a valuable and promising ecofriendly tool that fits with sustainable agriculture and healthy food. Despite the agroeconomic significance of wheat, the mechanisms underlying its induced defense responses remain obscure. We reveal here, using combined transcriptomic, metabolomic and cytologic approach, that the lipopeptide mycosubtilin from the beneficial bacterium Bacillus subtilis, protects wheat against Zymoseptoria tritici through a dual mode of action (direct and indirect) and that the indirect one relies mainly on the priming rather than on the elicitation of plant defense-related mechanisms. Indeed, the molecule primes the expression of 80 genes associated with sixteen functional groups during the early stages of infection, as well as the accumulation of several flavonoids during the period preceding the fungal switch to the necrotrophic phase. Moreover, genes involved in abscisic acid (ABA) biosynthesis and ABA-associated signaling pathways are regulated, suggesting a role of this phytohormone in the indirect activity of mycosubtilin. The priming-based bioactivity of mycosubtilin against a biotic stress could result from an interaction of the molecule with leaf cell plasma membranes that may mimic an abiotic stress stimulus in wheat leaves. This study provides new insights into induced immunity in wheat and opens new perspectives for the use of mycosubtilin as a biocontrol compound against Z. tritici.

8.
Front Plant Sci ; 12: 703712, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552606

RESUMEN

This study aimed to examine the ability of ulvan, a water-soluble polysaccharide from the green seaweed Ulva fasciata, to provide protection and induce resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici. Matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) analysis indicated that ulvan is mainly composed of unsaturated monosaccharides (rhamnose, rhamnose-3-sulfate, and xylose) and numerous uronic acid residues. In the greenhouse, foliar application of ulvan at 10 mg.ml-1 2 days before fungal inoculation reduced disease severity and pycnidium density by 45 and 50%, respectively. Ulvan did not exhibit any direct antifungal activity toward Z. tritici, neither in vitro nor in planta. However, ulvan treatment significantly reduced substomatal colonization and pycnidium formation within the mesophyll of treated leaves. Molecular assays revealed that ulvan spraying elicits, but does not prime, the expression of genes involved in several wheat defense pathways, including pathogenesis-related proteins (ß-1,3-endoglucanase and chitinase), reactive oxygen species metabolism (oxalate oxidase), and the octadecanoid pathway (lipoxygenase and allene oxide synthase), while no upregulation was recorded for gene markers of the phenylpropanoid pathway (phenylalanine ammonia-lyase and chalcone synthase). Interestingly, the quantification of 83 metabolites from major chemical families using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in both non-infectious and infectious conditions showed no substantial changes in wheat metabolome upon ulvan treatment, suggesting a low metabolic cost associated with ulvan-induced resistance. Our findings provide evidence that ulvan confers protection and triggers defense mechanisms in wheat against Z. tritici without major modification of the plant physiology.

9.
New Phytol ; 229(2): 1133-1146, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32896925

RESUMEN

Grapevine trunk diseases have devastating consequences on vineyards worldwide. European wild grapevines (Vitis vinifera subs. sylvestris) from the last viable population in Germany along the Rhine river showed variable degrees of resistance against Neofusicoccum parvum (strain Bt-67), a fungus associated with Botryosphaeriaceae-related dieback. Representative genotypes from different subclades of this population were mapped with respect to their ability to induce wood necrosis, as well as their defence responses in a controlled inoculation system. The difference in colonization patterns could be confirmed by cryo-scanning electron microscopy, while there was no relationship between vessel diameter and infection success. Resistant lines accumulated more stilbenes, that were in addition significantly partitioned to nonglycosylated viniferin trimers. By contrast, the susceptible genotypes accumulated less stilbenes with a significantly higher proportion of glycosylated piceid. We suggest a model in which in the resistant genotypes phenylpropanoid metabolism is channelled rapidly and specifically to the bioactive stilbenes. Our study specifies a resistant chemotype against grapevines trunk diseases and paves a way to breed for resistance against grapevine Botryosphaeriaceae-related dieback.


Asunto(s)
Estilbenos , Vitis , Ascomicetos , Alemania , Fitomejoramiento , Enfermedades de las Plantas , Estilbenos/farmacología , Vitis/genética
10.
Front Plant Sci ; 8: 456, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28421092

RESUMEN

The production of reactive oxygen species (ROS) is one of the first defense reactions induced in Arabidopsis in response to infection by the pectinolytic enterobacterium Dickeya dadantii. Previous results also suggest that abscisic acid (ABA) favors D. dadantii multiplication and spread into its hosts. Here, we confirm this hypothesis using ABA-deficient and ABA-overproducer Arabidopsis plants. We investigated the relationships between ABA status and ROS production in Arabidopsis after D. dadantii infection and showed that ABA status modulates the capacity of the plant to produce ROS in response to infection by decreasing the production of class III peroxidases. This mechanism takes place independently of the well-described oxidative stress related to the RBOHD NADPH oxidase. In addition to this weakening of plant defense, ABA content in the plant correlates positively with the production of some bacterial virulence factors during the first stages of infection. Both processes should enhance disease progression in presence of high ABA content. Given that infection increases transcript abundance for the ABA biosynthesis genes AAO3 and ABA3 and triggers ABA accumulation in leaves, we propose that D. dadantii manipulates ABA homeostasis as part of its virulence strategy.

11.
J Exp Bot ; 67(1): 227-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433202

RESUMEN

Cereal crop by-products are a promising source of renewable raw material for the production of biofuel from lignocellulose. However, their enzymatic conversion to fermentable sugars is detrimentally affected by lignins. Here the characterization of the Brachypodium Bd5139 mutant provided with a single nucleotide mutation in the caffeic acid O-methyltransferase BdCOMT6 gene is reported. This BdCOMT6-deficient mutant displayed a moderately altered lignification in mature stems. The lignin-related BdCOMT6 gene was also found to be expressed in grains, and the alterations of Bd5139 grain lignins were found to mirror nicely those evidenced in stem lignins. The Bd5139 grains displayed similar size and composition to the control. Complementation experiments carried out by introducing the mutated gene into the AtCOMT1-deficient Arabidopsis mutant demonstrated that the mutated BdCOMT6 protein was still functional. Such a moderate down-regulation of lignin-related COMT enzyme reduced the straw recalcitrance to saccharification, without compromising the vegetative or reproductive development of the plant.


Asunto(s)
Brachypodium/fisiología , Lignina/genética , Metiltransferasas/genética , Proteínas de Plantas/genética , Biocombustibles/análisis , Brachypodium/genética , Pared Celular/química , Grano Comestible/fisiología , Lignina/metabolismo , Metiltransferasas/metabolismo , Mutación , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/fisiología
12.
Phytochemistry ; 103: 50-58, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24731258

RESUMEN

Plant sphingolipids are a highly diverse family of structural and signal lipids. Owing to their chemical diversity and complexity, a powerful analytical method was required to identify and quantify a large number of individual molecules with a high degree of structural accuracy. By using ultra-performance liquid chromatography with a single elution system coupled to electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in the positive multiple reaction monitoring (MRM) mode, detailed sphingolipid composition was analyzed in various tissues of two Brassicaceae species Arabidopsis thaliana and Camelina sativa. A total of 300 molecular species were identified defining nine classes of sphingolipids, including Cers, hCers, Glcs and GIPCs. High-resolution mass spectrometry identified sphingolipids including amino- and N-acylated-GIPCs. The comparative analysis of seedling, seed and oil sphingolipids showed tissue specific distribution suggesting metabolic channeling and compartmentalization.


Asunto(s)
Lípidos/análisis , Aceites de Plantas/análisis , Plantas/química , Semillas/química , Esfingolípidos/análisis , Cromatografía Líquida de Alta Presión , Lípidos/química , Aceites de Plantas/química , Espectrometría de Masa por Ionización de Electrospray , Esfingolípidos/química , Espectrometría de Masas en Tándem
13.
Plant J ; 73(2): 225-39, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22978675

RESUMEN

Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Transporte de Membrana/metabolismo , Ralstonia solanacearum , Ácido Salicílico/metabolismo , Triptófano/metabolismo , Proteínas de Arabidopsis/genética , Hongos/fisiología , Regulación de la Expresión Génica de las Plantas/inmunología , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas , Pseudomonas syringae , Factores de Tiempo , Xanthomonas campestris
14.
Plant Physiol ; 158(1): 225-38, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22045922

RESUMEN

The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.


Asunto(s)
Lactonas/metabolismo , Pisum sativum/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Compuestos de Bencilo , Citocininas/genética , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Cinetina/farmacología , Datos de Secuencia Molecular , Mutación , Pisum sativum/efectos de los fármacos , Pisum sativum/genética , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Purinas , Transducción de Señal/genética , Regulación hacia Arriba , Xilema/genética , Xilema/metabolismo
15.
PLoS One ; 6(2): e16645, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21408051

RESUMEN

Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE), i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1) gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid) was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR) spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/genética , Agua/metabolismo , Acetiltransferasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Pared Celular/metabolismo , Celulosa/biosíntesis , Proteínas de la Membrana , Fenotipo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estrés Fisiológico/fisiología , Xilema/metabolismo
16.
Mol Plant ; 4(1): 70-82, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20829305

RESUMEN

Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the last steps of monolignol biosynthesis. In Arabidopsis, one CCR gene (CCR1, At1g15950) and two CAD genes (CAD C At3g19450 and CAD D At4g34230) are involved in this pathway. A triple cad c cad d ccr1 mutant, named ccc, was obtained. This mutant displays a severe dwarf phenotype and male sterility. The lignin content in ccc mature stems is reduced to 50% of the wild-type level. In addition, stem lignin structure is severely affected, as shown by the dramatic enrichment in resistant inter-unit bonds and incorporation into the polymer of monolignol precursors such as coniferaldehyde, sinapaldehyde, and ferulic acid. Male sterility is due to the lack of lignification in the anther endothecium, which causes the failure of anther dehiscence and of pollen release. The ccc hypolignified stems accumulate higher amounts of flavonol glycosides, sinapoyl malate and feruloyl malate, which suggests a redirection of the phenolic pathway. Therefore, the absence of CAD and CCR, key enzymes of the monolignol pathway, has more severe consequences on the phenotype than the individual absence of each of them. Induction of another CCR (CCR2, At1g80820) and another CAD (CAD1, At4g39330) does not compensate the absence of the main CCR and CAD activities. This lack of CCR and CAD activities not only impacts lignification, but also severely affects the development of the plants. These consequences must be carefully considered when trying to reduce the lignin content of plants in order to facilitate the lignocellulose-to-bioethanol conversion process.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Aldehído Oxidorreductasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Regulación hacia Abajo , Lignina/biosíntesis , Infertilidad Vegetal , Oxidorreductasas de Alcohol/genética , Aldehído Oxidorreductasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vías Biosintéticas , Regulación Enzimológica de la Expresión Génica
17.
J Exp Bot ; 62(2): 605-15, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20943826

RESUMEN

The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit.


Asunto(s)
Ácido Abscísico/farmacología , Germinación/efectos de los fármacos , Medicago truncatula/efectos de los fármacos , Medicago truncatula/metabolismo , Nitrógeno/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Agua/metabolismo , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácido Glutámico/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo
18.
J Agric Food Chem ; 58(10): 6246-56, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20429588

RESUMEN

Proanthocyanidins (PAs) are seed coat flavonoids that impair the digestibility of Brassica napus meal. Development of low-PA lines is associated with a high-quality meal and with increased contents in oil and proteins, but requires better knowledge of seed flavonoids. Flavonoids in Brassica mature seed are mostly insoluble so that very few qualitative and quantitative data are available yet. In the present study, the profiling of seed coat flavonoids was established in eight black-seeded B. napus genotypes, during seed development when soluble flavonoids were present and predominated over the insoluble forms. Thirteen different flavonoids including (-)-epicatechin, five procyanidins (PCs which are PAs composed of epicatechin oligomers only) and seven flavonols (quercetin-3-O-glucoside, quercetin-dihexoside, isorhamnetin-3-O-glucoside, isorhamnetin-hexoside-sulfate, isorhamnetin-dihexoside, isorhamnetin-sinapoyl-trihexoside and kaempferol-sinapoyl-trihexoside) were identified and quantified using liquid chromatography coupled to electrospray ionization-mass spectrometry (LC-ESI-MS(n)). These flavonol derivatives were characterized for the first time in the seed coat of B. napus, and isorhamnetin-hexoside-sulfate and isorhamnetin-sinapoyl-trihexoside were newly identified in Brassica spp. High amounts of PCs accumulated in the seed coat, with solvent-soluble polymers of (-)-epicatechin reaching up to 10% of the seed coat weight during seed maturation. In addition, variability for both PC and flavonol contents was observed within the panel of eight black-seeded genotypes. Our results provide new insights into breeding for low-PC B. napus genotypes.


Asunto(s)
Brassica napus/química , Flavonoides/análisis , Semillas/química , Semillas/crecimiento & desarrollo , Brassica napus/genética , Catequina/análisis , Cromatografía Liquida , Flavonoles/análisis , Genotipo , Cinética , Proantocianidinas/análisis , Espectrometría de Masa por Ionización de Electrospray
19.
Eur J Mass Spectrom (Chichester) ; 15(2): 221-30, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19423907

RESUMEN

Acylphenols from Myristica crassa were identified based on liquid chromatography high-resolution mass spectrometry and liquid chromatography tandem mass spectrometry (MS/MS) experiments. Two types of compound were found in the extract of the plant: monomeric (malabaricone B and C) and dimeric compounds (C-C bonded biphenyl and C-C bonded phenyl-linear carbon chain). Evidence of formation of covalent dimeric ions during the electrospray ionization and matrix-assisted laser desorption ionization (MALDI) processes was established. [2M-3H](-) dimeric ions were detected on the mass spectra of each monomeric compound during high-performance liquid chromatography separation. The MS/MS spectra of those species were compared to the MS/MS spectra obtained for the dimeric compounds synthesized by the plant. Fragmentation pathways were studied for the two classes of dimer. The dimeric ions formed in the ion source were C-C bonded biphenyl compounds. Further evidence was obtained from MALDI experiments: increase in the extraction delay time leads to an increase of the dimeric ions relative abundance. Their formation is based on the high reactivity of phenols or phenolate ions which are easily oxidized yielding phenoxy radicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...