Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cortex ; 175: 12-27, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701643

RESUMEN

Navigation through space is based on memory representations of landmarks ('place') or movement sequences ('response'). Over time, memory representations transform through consolidation. However, it is unclear how the transformation affects place and response navigation in humans. In the present study, healthy adults navigated to target locations in a virtual maze. The preference for using place and response strategies and the ability to recall place and response memories were tested after a delay of one hour (n = 31), one day (n = 30), or two weeks (n = 32). The different delays captured early-phase synaptic changes, changes after one night of sleep, and long-delay changes due to the reorganization of navigation networks. Our results show that the relative contributions of place and response navigation changed as a function of time. After a short delay of up to one day, participants preferentially used a place strategy and exhibited a high degree of visual landmark exploration. After a longer delay of two weeks, place strategy use decreased significantly. Participants now equally relied on place and response strategy use and increasingly repeated previously taken paths. Further analyses indicate that response strategy use predominantly occurred as a compensatory strategy in the absence of sufficient place memory. Over time, place memory faded before response memory. We suggest that the observed shift from place to response navigation is context-dependent since detailed landmark information, which strongly relied on hippocampal function, decayed faster than sequence information, which required less detail and depended on extra-hippocampal areas. We conclude that changes in place and response navigation likely reflect the reorganization of navigation networks during systems consolidation.


Asunto(s)
Consolidación de la Memoria , Navegación Espacial , Humanos , Masculino , Consolidación de la Memoria/fisiología , Navegación Espacial/fisiología , Femenino , Adulto , Adulto Joven , Percepción Espacial/fisiología , Memoria Espacial/fisiología , Hipocampo/fisiología , Recuerdo Mental/fisiología , Aprendizaje por Laberinto/fisiología
2.
Commun Biol ; 6(1): 1167, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963986

RESUMEN

Efficient navigation is supported by a cognitive map of space. The hippocampus plays a key role for this map by linking multimodal sensory information with spatial memory representations. However, in human navigation studies, the full range of sensory information is often unavailable due to the stationarity of experimental setups. We investigated the contribution of multisensory information to memory-guided spatial navigation by presenting a virtual version of the Morris water maze on a screen and in an immersive mobile virtual reality setup. Patients with hippocampal lesions and matched controls navigated to memorized object locations in relation to surrounding landmarks. Our results show that availability of multisensory input improves memory-guided spatial navigation in both groups. It has distinct effects on navigational behaviour, with greater improvement in spatial memory performance in patients. We conclude that congruent multisensory information shifts computations to extrahippocampal areas that support spatial navigation and compensates for spatial navigation deficits.


Asunto(s)
Navegación Espacial , Humanos , Hipocampo/patología , Memoria Espacial , Cognición
3.
J Neurol ; 270(8): 4031-4040, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37154895

RESUMEN

BACKGROUND: Previous studies have yielded inconsistent results about hippocampal involvement in non-demented patients with amyotrophic lateral sclerosis (ALS). We hypothesized that testing of memory-guided spatial navigation i.e., a highly hippocampus-dependent behaviour, might reveal behavioural correlates of hippocampal dysfunction in non-demented ALS patients. METHODS: We conducted a prospective study of spatial cognition in 43 non-demented ALS outpatients (11f, 32 m, mean age 60.0 years, mean disease duration 27.0 months, mean ALSFRS-R score 40.0) and 43 healthy controls (14f, 29 m, mean age 57.0 years). Participants were tested with a virtual memory-guided navigation task derived from animal research ("starmaze") that has previously been used in studies of hippocampal function. Participants were further tested with neuropsychological tests of visuospatial memory (SPART, 10/36 Spatial Recall Test), fluency (5PT, five-point test) and orientation (PTSOT, Perspective Taking/Spatial Orientation Test). RESULTS: Patients successfully learned and navigated the starmaze from memory, both in conditions that forced memory of landmarks (success: patients 50.7%, controls 47.7%, p = 0.786) and memory of path sequences (success: patients 96.5%, controls 94.0%, p = 0.937). Measures of navigational efficacy (latency, path error and navigational uncertainty) did not differ between groups (p ≥ 0.546). Likewise, SPART, 5PT and PTSOT scores did not differ between groups (p ≥ 0.238). CONCLUSIONS: This study found no behavioural correlate for hippocampal dysfunction in non-demented ALS patients. These findings support the view that the individual cognitive phenotype of ALS may relate to distinct disease subtypes rather than being a variable expression of the same underlying condition.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Estudios Prospectivos , Cognición , Pruebas Neuropsicológicas , Recuerdo Mental
4.
Cortex ; 156: 1-12, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36155977

RESUMEN

Memory consolidation is a continuous transformative process between encoding and retrieval of mental representations. Recent research has shown that neural activity immediately after encoding is particularly associated with later successful retrieval. It is currently unclear whether post-encoding neural activity makes a distinct and causal contribution to memory consolidation. Here, we investigated the role of the post-encoding period for consolidation of spatial memory in neurologically normal human subjects. We used the GABAA-ergic anesthetic propofol to transiently manipulate neural activity during the initial stage of spatial memory consolidation without affecting encoding or retrieval. A total of 52 participants undergoing minor surgery learned to navigate to a target in a five-armed maze derived from animal experiments. Participants completed learning either immediately prior to injection of propofol (early group) or more than 60 min before injection (late group). Four hours after anesthesia, participants were tested for memory-guided navigation. Our results show a selective impairment of navigation in the early group and near-normal performance in the late group. Analysis of navigational error patterns further suggested that propofol impaired distinct aspects of spatial representations, in particular sequences of path segments and spatial relationships between landmarks. We conclude that neural activity during the post-encoding period makes a causal and specific contribution to consolidation of representations underlying self-centered and world-centered memory-guided navigation. Distinct aspects of these representations are susceptible to GABAA-ergic modulation within a post-encoding time-window of less than 60 min, presumably reflecting associative processes that contribute to the formation of integrated spatial representations that guide future behavior.


Asunto(s)
Consolidación de la Memoria , Propofol , Humanos , Animales , Memoria Espacial , Propofol/farmacología , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...