Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 6: 7099, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26028337

RESUMEN

Recurrent deposition of organic-rich sediment layers (sapropels) in the eastern Mediterranean Sea is caused by complex interactions between climatic and biogeochemical processes. Disentangling these influences is therefore important for Mediterranean palaeo-studies in particular, and for understanding ocean feedback processes in general. Crucially, sapropels are diagnostic of anoxic deep-water phases, which have been attributed to deep-water stagnation, enhanced biological production or both. Here we use an ocean-biogeochemical model to test the effects of commonly proposed climatic and biogeochemical causes for sapropel S1. Our results indicate that deep-water anoxia requires a long prelude of deep-water stagnation, with no particularly strong eutrophication. The model-derived time frame agrees with foraminiferal δ(13)C records that imply cessation of deep-water renewal from at least Heinrich event 1 to the early Holocene. The simulated low particulate organic carbon burial flux agrees with pre-sapropel reconstructions. Our results offer a mechanistic explanation of glacial-interglacial influence on sapropel formation.


Asunto(s)
Ciclo del Carbono , Sedimentos Geológicos , Cubierta de Hielo , Oxígeno , Agua de Mar/química , Benzopiranos , Foraminíferos , Sustancias Húmicas , Mar Mediterráneo , Modelos Teóricos , Datación Radiométrica
2.
Chemosphere ; 76(11): 1509-17, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19576616

RESUMEN

A coupled atmosphere-ocean general circulation model, ECHAM5-MPIOM, was used to study the multicompartmental cycling and long-range transport of persistent and semivolatile organics. Multiphase systems in air and ocean are covered by submodels for atmospheric aerosols, HAM, and marine biogeochemistry, HAMOCC5, respectively. The model, furthermore, encompasses 2D surface compartments, i.e. top soil, vegetation surfaces and sea-ice. The total environmental fate of gamma-hexachlorocyclohexane (gamma-HCH, lindane) and dichlorophenyltrichloroethane (DDT) in agriculture were studied. DDT is mostly present in the soils, the water-soluble gamma-HCH in soils and ocean. DDT has the longest residence time in almost all compartments. Quasi-steady state with regard to substance accumulation is reached within a few years in air and vegetation surfaces. In seawater the partitioning to suspended and sinking particles contributes to the vertical transport of substances. On the global scale deep water formation is, however, found to be more efficient. Up to 30% of DDT but only less than 0.2% of gamma-HCH in seawater are stored in particulate matter. On the time scale studied (1 decade) and on global scale substance transport in the environment is determined by the fast atmospheric circulation. The meridional transport mechanism, for both compounds, is significantly enhanced by multi-hopping. Net meridional transport in the ocean is effective only regionally, mostly by currents along the western boundaries of Africa and the Americas. The total environmental burdens of the substances experience a net northward migration from their source regions, which is more pronounced for DDT than for gamma-HCH. Due to the application distribution, however, after 10 years of simulation 21% of the global environmental burden of gamma-HCH and 12% of DDT have accumulated in the Arctic.


Asunto(s)
Atmósfera/química , DDT/análisis , Contaminantes Ambientales/análisis , Hexaclorociclohexano/análisis , Modelos Químicos , Agua de Mar/química , Movimientos del Aire , Monitoreo del Ambiente , Geografía , Insecticidas/análisis , Cinética , Océanos y Mares , Movimientos del Agua
3.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16193043

RESUMEN

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Asunto(s)
Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Ecosistema , Agua de Mar/química , Ácidos/análisis , Animales , Antozoos/metabolismo , Atmósfera/química , Carbonato de Calcio/análisis , Carbonato de Calcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Océanos y Mares , Plancton/química , Plancton/metabolismo , Termodinámica , Factores de Tiempo , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA