Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 38(5): 665-676, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33176547

RESUMEN

Traumatic brain injury (TBI) increases the risk for dementias including Alzheimer's disease (AD) and chronic traumatic encephalopathy. Further, both human and animal model data indicate that amyloid-beta (Aß) peptide accumulation and its production machinery are upregulated by TBI. Considering the clear link between chronic Aß elevation and AD as well as tau pathology, the role(s) of Aß in TBI is of high importance. Endopeptidases, including the neprilysin (NEP)-like enzymes, are key mediators of Aß clearance and may affect susceptibility to pathology post-TBI. Here, we use a "humanized" mouse model of Aß production, which expresses normal human amyloid-beta precursor protein (APP) under its natural transcriptional regulation and exposed them to a more clinically relevant repeated closed-head TBI paradigm. These transgenic mice also were crossed with mice deficient for the Aß degrading enzymes NEP or NEP2 to assess models of reduced cerebral Aß clearance in our TBI model. Our results show that the presence of the human form of Aß did not exacerbate motor (Rotarod) and spatial learning/memory deficits (Morris water maze) post-injuries, while potentially reduced anxiety (Open Field) was observed. NEP and NEP2 deficiency also did not exacerbate these deficits post-injuries and was associated with protection from motor (NEP and NEP2) and spatial learning/memory deficits (NEP only). These data suggest that normally regulated expression of wild-type human APP/Aß does not contribute to deficits acutely after TBI and may be protective at this stage of injury.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Conducta Animal/fisiología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/psicología , Traumatismos Cerrados de la Cabeza/metabolismo , Traumatismos Cerrados de la Cabeza/psicología , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Modelos Animales de Enfermedad , Traumatismos Cerrados de la Cabeza/complicaciones , Humanos , Aprendizaje por Laberinto/fisiología , Ratones Transgénicos , Prueba de Desempeño de Rotación con Aceleración Constante
2.
J Neurosci ; 36(43): 11037-11050, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27798184

RESUMEN

The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT: Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information.


Asunto(s)
Corteza Auditiva/citología , Conectoma/métodos , Colículos Inferiores/citología , Red Nerviosa/química , Vías Nerviosas/citología , Corteza Somatosensorial/citología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...