Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 19(1): 191-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35067194

RESUMEN

Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5' gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.


Asunto(s)
Regiones no Traducidas 5' , Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/fisiología , ARN Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Viral/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Replicación Viral
2.
Nat Commun ; 12(1): 6750, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799570

RESUMEN

The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Movilización Lipídica , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/genética
3.
Retrovirology ; 16(1): 18, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31269971

RESUMEN

BACKGROUND: Nef is a multifunctional accessory protein encoded by HIV-1, HIV-2 and SIV that plays critical roles in viral pathogenesis, contributing to viral replication, assembly, budding, infectivity and immune evasion, through engagement of various host cell pathways. RESULTS: To gain a better understanding of the role of host proteins in the functions of Nef, we carried out tandem affinity purification-mass spectrometry analysis, and identified over 70 HIV-1 Nef-interacting proteins, including the autophagy-related 9A (ATG9A) protein. ATG9A is a transmembrane component of the machinery for autophagy, a catabolic process in which cytoplasmic components are degraded in lysosomal compartments. Pulldown experiments demonstrated that ATG9A interacts with Nef from not only HIV-1 and but also SIV (cpz, smm and mac). However, expression of HIV-1 Nef had no effect on the levels and localization of ATG9A, and on autophagy, in the host cells. To investigate a possible role for ATG9A in virus replication, we knocked out ATG9A in HeLa cervical carcinoma and Jurkat T cells, and analyzed virus release and infectivity. We observed that ATG9A knockout (KO) had no effect on the release of wild-type (WT) or Nef-defective HIV-1 in these cells. However, the infectivity of WT virus produced from ATG9A-KO HeLa and Jurkat cells was reduced by ~ fourfold and eightfold, respectively, relative to virus produced from WT cells. This reduction in infectivity was independent of the interaction of Nef with ATG9A, and was not due to reduced incorporation of the viral envelope (Env) glycoprotein into the virus. The loss of HIV-1 infectivity was rescued by pseudotyping HIV-1 virions with the vesicular stomatitis virus G glycoprotein. CONCLUSIONS: These studies indicate that ATG9A promotes HIV-1 infectivity in an Env-dependent manner. The interaction of Nef with ATG9A, however, is not required for Nef to enhance HIV-1 infectivity. We speculate that ATG9A could promote infectivity by participating in either the removal of a factor that inhibits infectivity or the incorporation of a factor that enhances infectivity of the viral particles. These studies thus identify a novel host cell factor implicated in HIV-1 infectivity, which may be amenable to pharmacologic manipulation for treatment of HIV-1 infection.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Infecciones por VIH/virología , Interacciones Microbiota-Huesped , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Células Jurkat , Proteínas de la Membrana/genética , Proteínas de Transporte Vesicular/genética , Replicación Viral , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
4.
Wiley Interdiscip Rev RNA ; 10(2): e1518, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30485688

RESUMEN

RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.


Asunto(s)
Geles , Conformación de Ácido Nucleico , ARN/química , Análisis de Secuencia de ARN/métodos
5.
Viruses ; 8(9)2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27626439

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55(Gag) precursor polyprotein, and the processes leading to its incorporation into viral particles.


Asunto(s)
VIH-1/fisiología , ARN Viral/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Unión Proteica
6.
Nat Commun ; 5: 4304, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24986025

RESUMEN

During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA.


Asunto(s)
Genoma Viral , VIH-1/fisiología , Precursores de Proteínas/metabolismo , ARN Viral/metabolismo , Ensamble de Virus , Sitios de Unión , Precursores de Proteínas/química , Precursores de Proteínas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA